File size: 2,407 Bytes
44681da 440fc16 74852cc b4d51fd 25ddbfa b4d51fd 25ddbfa b4d51fd 25ddbfa b4d51fd 6dc9a17 74852cc 4a8eced 74852cc 6dc9a17 74852cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
datasets:
- Abirate/english_quotes
language:
- en
library_name: transformers
---
# Quantization 4Bits - 4.92 GB GPU memory usage for inference:
```
$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A |
| 37% 70C P2 163W / 170W | 4923MiB / 12288MiB | 91% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
```
## Fine-tuning
Details:
```
3 epochs, all dataset samples (split=train), 939 steps
1 x GPU 3060 12GB - max. GPU memory: 7.44 GB
duration: 1h45min
```
## Inference
```
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
model_path = "nlpulse/gpt-j-6b-english_quotes"
# tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
# quantization config
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# model
model = AutoModelForCausalLM.from_pretrained(model_path, quantization_config=quant_config, device_map={"":0})
# inference
device = "cuda"
text_list = ["Ask not what your country", "Be the change that", "You only live once, but", "I'm selfish, impatient and"]
for text in text_list:
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=60)
print('>> ', text, " => ", tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Scripts
[https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/gptj-6b](https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/gptj-6b)
|