mgoin commited on
Commit
75cbe95
1 Parent(s): 265e297

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -5,18 +5,18 @@ tags:
5
  - vllm
6
  ---
7
 
8
- # Meta-Llama-3-8B-pruned_50.2of4-FP8
9
 
10
  This repo contains model files for a 2:4 (N:M) sparse [Meta-Llama-3-8B](meta-llama/Meta-Llama-3-8B) model pruned in one-shot with [SparseGPT](https://arxiv.org/abs/2301.00774), and then additionally retrained with the [SquareHead](https://arxiv.org/abs/2310.06927) knowledge distillation while maintaining the 2:4 sparsity mask.
11
  It was then quantized using [AutoFP8](https://github.com/neuralmagic/AutoFP8) to FP8 weights and activations with per-tensor scales, calibrated on UltraChat2k.
12
 
13
- **Note:** The unquantized [Meta-Llama-3-8B-pruned_50.2of4-FP8](https://huggingface.co/nm-testing/SparseLlama-3-8B-pruned_50.2of4) is still a work in progress and subject to change. This FP8 model will be updated once the unquantized model is updated too.
14
 
15
  ## Evaluation Benchmark Results
16
 
17
  Model evaluation results obtained via [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) following the configuration of [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard).
18
 
19
- | Benchmark | Meta-Llama-3-8B | Meta-Llama-3-8B-pruned_50.2of4 | Meta-Llama-3-8B-pruned_50.2of4-FP8<br>(this model) |
20
  |:----------------------------------------------:|:-----------:|:-----------------------------:|:-----------------------------:|
21
  | [ARC-c](https://arxiv.org/abs/1911.01547)<br> 25-shot | 59.47% | 57.76% | 58.02% |
22
  | [MMLU](https://arxiv.org/abs/2009.03300)<br> 5-shot | 65.29% | 60.44% | 60.71% |
 
5
  - vllm
6
  ---
7
 
8
+ # SparseLlama-3-8B-pruned_50.2of4-FP8
9
 
10
  This repo contains model files for a 2:4 (N:M) sparse [Meta-Llama-3-8B](meta-llama/Meta-Llama-3-8B) model pruned in one-shot with [SparseGPT](https://arxiv.org/abs/2301.00774), and then additionally retrained with the [SquareHead](https://arxiv.org/abs/2310.06927) knowledge distillation while maintaining the 2:4 sparsity mask.
11
  It was then quantized using [AutoFP8](https://github.com/neuralmagic/AutoFP8) to FP8 weights and activations with per-tensor scales, calibrated on UltraChat2k.
12
 
13
+ **Note:** The unquantized [SparseLlama-3-8B-pruned_50.2of4-FP8](https://huggingface.co/nm-testing/SparseLlama-3-8B-pruned_50.2of4) is still a work in progress and subject to change. This FP8 model will be updated once the unquantized model is updated too.
14
 
15
  ## Evaluation Benchmark Results
16
 
17
  Model evaluation results obtained via [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) following the configuration of [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard).
18
 
19
+ | Benchmark | Meta-Llama-3-8B | SparseLlama-3-8B-pruned_50.2of4 | SparseLlama-3-8B-pruned_50.2of4-FP8<br>(this model) |
20
  |:----------------------------------------------:|:-----------:|:-----------------------------:|:-----------------------------:|
21
  | [ARC-c](https://arxiv.org/abs/1911.01547)<br> 25-shot | 59.47% | 57.76% | 58.02% |
22
  | [MMLU](https://arxiv.org/abs/2009.03300)<br> 5-shot | 65.29% | 60.44% | 60.71% |