--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 inference: false model_type: llama prompt_template: | <|im_start|>user\n {prompt}<|im_end|>\n <|im_start|>assistant\n quantized_by: mwitiderrick tags: - deepsparse --- ## TinyLlama 1.1B Chat 1.0 - DeepSparse This repo contains model files for [TinyLlama 1.1B Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: ```bash pip install deepsparse-nightly[llm] ``` Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): ```python from deepsparse import TextGeneration prompt = "How to make banana bread?" formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" model = TextGeneration(model_path="hf:nm-testing/TinyLlama-1.1B-Chat-v1.0-pruned50-quant-ds") print(model(formatted_prompt, max_new_tokens=200).generations[0].text) """ Sure, here's a recipe for making banana bread: Ingredients: - 1 cup of all-purpose flour - 1 cup of unsalted butter - 1 cup of unsalted sugar - 1 cup of mashed bananas - 1 cup of milk - 1/2 cup of egg whites - 1/4 cup of melted butter Instructions: 1. Preheat oven to 375°F (150°C). 2. In a large mixing bowl, combine flour, sugar, mashed bananas, milk, egg whites, and butter. Mix well. 3. Add melted butter and mix again. 4. Add melted sugar and mix again. 5. Add melted milk and mix again. 6. Add egg whites and mix """ ``` ## Prompt template ``` <|im_start|>user\n {prompt}<|im_end|>\n <|im_start|>assistant\n ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py TinyLlama/TinyLlama-1.1B-Chat-v1.0 open_platypus --precision float16 --recipe recipe.yaml --save True python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment cp deployment/model.onnx deployment/model-orig.onnx ``` Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: ```python import os import onnx from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector input_file = "deployment/model-orig.onnx" output_file = "deployment/model.onnx" model = onnx.load(input_file, load_external_data=False) model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) onnx.save(model, output_file) print(f"Modified model saved to: {output_file}") ``` Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)