Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +1228 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +49 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: Why should companies invest in UX design?
|
14 |
+
- text: Evaluate the efficiency of the current workflow.
|
15 |
+
- text: I need a resume for a finance analyst.
|
16 |
+
- text: Generate ideas for improving employee satisfaction.
|
17 |
+
- text: Generate a campaign for increasing our Instagram followers.
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 0.9977272727272727
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 44 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:-------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| analyze | <ul><li>'Analyze the results from the A/B testing.'</li><li>'Evaluate the effectiveness of the new strategy.'</li><li>'What are the key insights from the customer survey?'</li></ul> |
|
66 |
+
| analyze advantages | <ul><li>'Analyze the advantages of social media marketing for startups.'</li><li>'Analyze the advantages of electric vehicles over gas-powered cars.'</li><li>'What are the benefits of a plant-based diet for health?'</li></ul> |
|
67 |
+
| analyze best practices | <ul><li>'What are the industry standards for data security?'</li><li>'Evaluate best practices for customer service.'</li><li>'Analyze best practices for social media marketing.'</li></ul> |
|
68 |
+
| analyze business proposal | <ul><li>'Analyze the competitive analysis in the business plan.'</li><li>'Evaluate the team structure mentioned in the proposal.'</li><li>'What are the key points in the executive summary?'</li></ul> |
|
69 |
+
| analyze data | <ul><li>'What does the data tell us about user engagement?'</li><li>'Analyze the sales data for the last quarter.'</li><li>'Analyze the data to determine customer preferences.'</li></ul> |
|
70 |
+
| analyze data backup and recovery | <ul><li>'Evaluate the effectiveness of the backup strategy.'</li><li>'Analyze the current data backup procedures.'</li><li>'What are the risks associated with our data recovery plan?'</li></ul> |
|
71 |
+
| analyze data visualization | <ul><li>'What does this bar chart tell us about customer demographics?'</li><li>'Interpret the data in this line chart.'</li><li>'Analyze the distribution shown in this histogram.'</li></ul> |
|
72 |
+
| analyze feedback | <ul><li>'Analyze customer feedback from the recent survey.'</li><li>'Analyze the feedback received from the beta testers.'</li><li>'Evaluate the feedback from the focus group.'</li></ul> |
|
73 |
+
| analyze information | <ul><li>'What are the main points from the research findings?'</li><li>'Evaluate the information from the competitor analysis.'</li><li>'What conclusions can be drawn from the survey results?'</li></ul> |
|
74 |
+
| analyze information technology security policy | <ul><li>'Evaluate the risks mentioned in the security policy.'</li><li>"Analyze the company's IT security policy."</li><li>'What are the strengths of our IT security measures?'</li></ul> |
|
75 |
+
| analyze job descriptions | <ul><li>'Analyze the job description for the new position.'</li><li>'What are the key responsibilities listed in the job description?'</li><li>'Evaluate the job description for inclusivity.'</li></ul> |
|
76 |
+
| analyze marketing campaign | <ul><li>'Evaluate the customer conversion rates from the Google Ads campaign.'</li><li>'What were the engagement rates for the spring sale campaign?'</li><li>'Assess the performance of the influencer marketing strategy.'</li></ul> |
|
77 |
+
| analyze packaging design | <ul><li>'What are the strengths and weaknesses of the packaging?'</li><li>'Evaluate the impact of packaging on brand perception.'</li><li>'Analyze the cost-effectiveness of the packaging design.'</li></ul> |
|
78 |
+
| analyze process | <ul><li>'What are the key steps in our product development process?'</li><li>'Evaluate the process for software deployment.'</li><li>'Analyze the process for onboarding new employees.'</li></ul> |
|
79 |
+
| analyze product description | <ul><li>'What are the strengths of this product description?'</li><li>'Evaluate the clarity of the product description.'</li><li>'Analyze the persuasiveness of the product features.'</li></ul> |
|
80 |
+
| analyze product rebranding | <ul><li>'What were the challenges faced during rebranding?'</li><li>'What are the key changes in the new branding?'</li><li>'Evaluate the customer response to the rebranding effort.'</li></ul> |
|
81 |
+
| analyze product recall | <ul><li>'Analyze the customer feedback after the recall.'</li><li>'What were the financial implications of the recall?'</li><li>'Evaluate the effectiveness of the recall process.'</li></ul> |
|
82 |
+
| analyze social media campaign | <ul><li>'Evaluate the reach and impressions of the LinkedIn posts.'</li><li>'Analyze the effectiveness of the Twitter campaign.'</li><li>'What improvements can be made to our social media campaigns?'</li></ul> |
|
83 |
+
| analyze time management | <ul><li>'Analyze how I can better prioritize my tasks.'</li><li>'Analyze my current time management techniques.'</li><li>'What are the weaknesses in my time management?'</li></ul> |
|
84 |
+
| analyze trends | <ul><li>'Analyze the social media trends influencing businesses.'</li><li>'What are the current trends in digital marketing?'</li><li>'Analyze the latest trends in the tech industry.'</li></ul> |
|
85 |
+
| analyze website concept | <ul><li>'Analyze the content strategy of the new website.'</li><li>'What are the key elements of a successful website concept?'</li><li>'Analyze the mobile responsiveness of the website design.'</li></ul> |
|
86 |
+
| bake | <ul><li>'Bake a loaf of banana bread.'</li><li>'How do I bake a cheesecake?'</li><li>'Bake a batch of brownies.'</li></ul> |
|
87 |
+
| define | <ul><li>"Define the term 'machine learning'."</li><li>"What does 'SEO' stand for?"</li><li>"Define 'data analytics'."</li></ul> |
|
88 |
+
| explain | <ul><li>"Explain the importance of cybersecurity in today's world."</li><li>'Explain how machine learning works.'</li><li>'Can you clarify what SEO involves?'</li></ul> |
|
89 |
+
| explain the importance of user experience design | <ul><li>'Explain how UX design improves accessibility.'</li><li>'Why is user experience design important for websites?'</li><li>'Why should companies invest in UX design?'</li></ul> |
|
90 |
+
| generate business proposal | <ul><li>'What is the format for a business proposal?'</li><li>'Generate a business proposal for a new product line.'</li><li>'Create a proposal for a partnership with another company.'</li></ul> |
|
91 |
+
| generate crisis communication plan | <ul><li>'Create a communication plan for a financial crisis.'</li><li>'Create a plan for communicating with stakeholders in a crisis.'</li><li>'Generate a plan for internal communication during a crisis.'</li></ul> |
|
92 |
+
| generate ideas | <ul><li>'Generate ideas for improving employee satisfaction.'</li><li>'Come up with ideas for our company’s anniversary event.'</li><li>'What are some unique selling points for our service?'</li></ul> |
|
93 |
+
| generate learning plan | <ul><li>'Create a learning plan for understanding machine learning concepts.'</li><li>'Create a plan for learning digital marketing skills.'</li><li>'What should be included in a learning plan for data science?'</li></ul> |
|
94 |
+
| generate product description | <ul><li>'Generate a product description for the new smartphone.'</li><li>'Create a detailed description of the latest software.'</li><li>'What should be included in a product description?'</li></ul> |
|
95 |
+
| generate product roadmap | <ul><li>'Create a roadmap for the new software development.'</li><li>'What should be included in a product roadmap?'</li><li>'Generate a product roadmap for customer feedback integration.'</li></ul> |
|
96 |
+
| generate project proposal | <ul><li>'What are the key elements of a project proposal?'</li><li>'What should be included in a project proposal?'</li><li>'Generate a proposal for a research project.'</li></ul> |
|
97 |
+
| generate recommendations | <ul><li>'Provide recommendations for streamlining operations.'</li><li>'Generate recommendations for improving customer service.'</li><li>'What are your recommendations for the new marketing strategy?'</li></ul> |
|
98 |
+
| generate resume | <ul><li>'I need a resume for a teaching position.'</li><li>'Generate a resume for a software engineer.'</li><li>'Generate a resume for a data scientist.'</li></ul> |
|
99 |
+
| generate social media campaign | <ul><li>"Create a campaign to highlight our company's sustainability efforts."</li><li>'Generate a campaign for increasing our Instagram followers.'</li><li>'I need a campaign plan for promoting our summer sale.'</li></ul> |
|
100 |
+
| generate template | <ul><li>'Can you make a template for job descriptions?'</li><li>'Create a template for a project proposal.'</li><li>'Generate a meeting agenda template.'</li></ul> |
|
101 |
+
| generate training program outline | <ul><li>'Generate a training program outline for new employees.'</li><li>'Generate an outline for diversity and inclusion training.'</li><li>'Create an outline for a leadership training program.'</li></ul> |
|
102 |
+
| learn a language | <ul><li>'How do I become fluent in Portuguese?'</li><li>'How can I practice English pronunciation?'</li><li>'What is the best way to learn Chinese characters?'</li></ul> |
|
103 |
+
| manage time | <ul><li>'How do I balance work and personal life?'</li><li>'Tips for managing time during exams.'</li><li>'How do I create a daily schedule?'</li></ul> |
|
104 |
+
| outline steps | <ul><li>'What are the steps to develop a training program?'</li><li>'Outline the steps to launch a new product.'</li><li>'Outline the steps to implement a new software system.'</li></ul> |
|
105 |
+
| provide general information | <ul><li>'Can you give me an overview of the new software?'</li><li>"Give me general information about the industry's trends."</li><li>'What are the key points about the product launch?'</li></ul> |
|
106 |
+
| recommend | <ul><li>'What are the top destinations for a vacation?'</li><li>'What podcasts would you suggest for entrepreneurs?'</li><li>'Recommend a good book on data science.'</li></ul> |
|
107 |
+
| summarize advantages | <ul><li>'Summarize the advantages of using renewable energy.'</li><li>'Summarize the advantages of social media marketing.'</li><li>'What are the benefits of using project management software?'</li></ul> |
|
108 |
+
| summarize financial report | <ul><li>'Summarize the main findings of the quarterly financial report.'</li><li>'Provide a summary of the financial projections.'</li><li>'What are the key metrics in the financial summary?'</li></ul> |
|
109 |
+
|
110 |
+
## Evaluation
|
111 |
+
|
112 |
+
### Metrics
|
113 |
+
| Label | Accuracy |
|
114 |
+
|:--------|:---------|
|
115 |
+
| **all** | 0.9977 |
|
116 |
+
|
117 |
+
## Uses
|
118 |
+
|
119 |
+
### Direct Use for Inference
|
120 |
+
|
121 |
+
First install the SetFit library:
|
122 |
+
|
123 |
+
```bash
|
124 |
+
pip install setfit
|
125 |
+
```
|
126 |
+
|
127 |
+
Then you can load this model and run inference.
|
128 |
+
|
129 |
+
```python
|
130 |
+
from setfit import SetFitModel
|
131 |
+
|
132 |
+
# Download from the 🤗 Hub
|
133 |
+
model = SetFitModel.from_pretrained("nmlemus/setfit-paraphrase-mpnet-base-v2-surepath-chatgtp-dataset")
|
134 |
+
# Run inference
|
135 |
+
preds = model("I need a resume for a finance analyst.")
|
136 |
+
```
|
137 |
+
|
138 |
+
<!--
|
139 |
+
### Downstream Use
|
140 |
+
|
141 |
+
*List how someone could finetune this model on their own dataset.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Out-of-Scope Use
|
146 |
+
|
147 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
148 |
+
-->
|
149 |
+
|
150 |
+
<!--
|
151 |
+
## Bias, Risks and Limitations
|
152 |
+
|
153 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
154 |
+
-->
|
155 |
+
|
156 |
+
<!--
|
157 |
+
### Recommendations
|
158 |
+
|
159 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
160 |
+
-->
|
161 |
+
|
162 |
+
## Training Details
|
163 |
+
|
164 |
+
### Training Set Metrics
|
165 |
+
| Training set | Min | Median | Max |
|
166 |
+
|:-------------|:----|:-------|:----|
|
167 |
+
| Word count | 3 | 7.8795 | 13 |
|
168 |
+
|
169 |
+
| Label | Training Sample Count |
|
170 |
+
|:-------------------------------------------------|:----------------------|
|
171 |
+
| analyze | 10 |
|
172 |
+
| analyze advantages | 10 |
|
173 |
+
| analyze best practices | 10 |
|
174 |
+
| analyze business proposal | 10 |
|
175 |
+
| analyze data | 10 |
|
176 |
+
| analyze data backup and recovery | 10 |
|
177 |
+
| analyze data visualization | 10 |
|
178 |
+
| analyze feedback | 10 |
|
179 |
+
| analyze information | 10 |
|
180 |
+
| analyze information technology security policy | 10 |
|
181 |
+
| analyze job descriptions | 10 |
|
182 |
+
| analyze marketing campaign | 10 |
|
183 |
+
| analyze packaging design | 10 |
|
184 |
+
| analyze process | 10 |
|
185 |
+
| analyze product description | 10 |
|
186 |
+
| analyze product rebranding | 10 |
|
187 |
+
| analyze product recall | 10 |
|
188 |
+
| analyze social media campaign | 10 |
|
189 |
+
| analyze time management | 10 |
|
190 |
+
| analyze trends | 10 |
|
191 |
+
| analyze website concept | 10 |
|
192 |
+
| bake | 10 |
|
193 |
+
| define | 10 |
|
194 |
+
| explain | 10 |
|
195 |
+
| explain the importance of user experience design | 10 |
|
196 |
+
| generate business proposal | 10 |
|
197 |
+
| generate crisis communication plan | 10 |
|
198 |
+
| generate ideas | 10 |
|
199 |
+
| generate learning plan | 10 |
|
200 |
+
| generate product description | 10 |
|
201 |
+
| generate product roadmap | 10 |
|
202 |
+
| generate project proposal | 10 |
|
203 |
+
| generate recommendations | 10 |
|
204 |
+
| generate resume | 10 |
|
205 |
+
| generate social media campaign | 10 |
|
206 |
+
| generate template | 10 |
|
207 |
+
| generate training program outline | 10 |
|
208 |
+
| learn a language | 10 |
|
209 |
+
| manage time | 10 |
|
210 |
+
| outline steps | 10 |
|
211 |
+
| provide general information | 10 |
|
212 |
+
| recommend | 10 |
|
213 |
+
| summarize advantages | 10 |
|
214 |
+
| summarize financial report | 10 |
|
215 |
+
|
216 |
+
### Training Hyperparameters
|
217 |
+
- batch_size: (16, 16)
|
218 |
+
- num_epochs: (4, 4)
|
219 |
+
- max_steps: -1
|
220 |
+
- sampling_strategy: oversampling
|
221 |
+
- body_learning_rate: (2e-05, 1e-05)
|
222 |
+
- head_learning_rate: 0.01
|
223 |
+
- loss: CosineSimilarityLoss
|
224 |
+
- distance_metric: cosine_distance
|
225 |
+
- margin: 0.25
|
226 |
+
- end_to_end: False
|
227 |
+
- use_amp: False
|
228 |
+
- warmup_proportion: 0.1
|
229 |
+
- seed: 42
|
230 |
+
- eval_max_steps: -1
|
231 |
+
- load_best_model_at_end: True
|
232 |
+
|
233 |
+
### Training Results
|
234 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
235 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
236 |
+
| 0.0001 | 1 | 0.1037 | - |
|
237 |
+
| 0.0042 | 50 | 0.1544 | - |
|
238 |
+
| 0.0085 | 100 | 0.1555 | - |
|
239 |
+
| 0.0127 | 150 | 0.0948 | - |
|
240 |
+
| 0.0169 | 200 | 0.1176 | - |
|
241 |
+
| 0.0211 | 250 | 0.1108 | - |
|
242 |
+
| 0.0254 | 300 | 0.1169 | - |
|
243 |
+
| 0.0296 | 350 | 0.1291 | - |
|
244 |
+
| 0.0338 | 400 | 0.1068 | - |
|
245 |
+
| 0.0381 | 450 | 0.1369 | - |
|
246 |
+
| 0.0423 | 500 | 0.0823 | - |
|
247 |
+
| 0.0465 | 550 | 0.0732 | - |
|
248 |
+
| 0.0507 | 600 | 0.1006 | - |
|
249 |
+
| 0.0550 | 650 | 0.0638 | - |
|
250 |
+
| 0.0592 | 700 | 0.0818 | - |
|
251 |
+
| 0.0634 | 750 | 0.0542 | - |
|
252 |
+
| 0.0677 | 800 | 0.039 | - |
|
253 |
+
| 0.0719 | 850 | 0.0497 | - |
|
254 |
+
| 0.0761 | 900 | 0.016 | - |
|
255 |
+
| 0.0803 | 950 | 0.021 | - |
|
256 |
+
| 0.0846 | 1000 | 0.0136 | - |
|
257 |
+
| 0.0888 | 1050 | 0.0353 | - |
|
258 |
+
| 0.0930 | 1100 | 0.0164 | - |
|
259 |
+
| 0.0973 | 1150 | 0.0123 | - |
|
260 |
+
| 0.1015 | 1200 | 0.0218 | - |
|
261 |
+
| 0.1057 | 1250 | 0.0845 | - |
|
262 |
+
| 0.1099 | 1300 | 0.0082 | - |
|
263 |
+
| 0.1142 | 1350 | 0.0385 | - |
|
264 |
+
| 0.1184 | 1400 | 0.0087 | - |
|
265 |
+
| 0.1226 | 1450 | 0.0133 | - |
|
266 |
+
| 0.1268 | 1500 | 0.0045 | - |
|
267 |
+
| 0.1311 | 1550 | 0.0054 | - |
|
268 |
+
| 0.1353 | 1600 | 0.0078 | - |
|
269 |
+
| 0.1395 | 1650 | 0.0068 | - |
|
270 |
+
| 0.1438 | 1700 | 0.0586 | - |
|
271 |
+
| 0.1480 | 1750 | 0.0173 | - |
|
272 |
+
| 0.1522 | 1800 | 0.0585 | - |
|
273 |
+
| 0.1564 | 1850 | 0.0052 | - |
|
274 |
+
| 0.1607 | 1900 | 0.0046 | - |
|
275 |
+
| 0.1649 | 1950 | 0.0021 | - |
|
276 |
+
| 0.1691 | 2000 | 0.0092 | - |
|
277 |
+
| 0.1734 | 2050 | 0.0027 | - |
|
278 |
+
| 0.1776 | 2100 | 0.0041 | - |
|
279 |
+
| 0.1818 | 2150 | 0.0053 | - |
|
280 |
+
| 0.1860 | 2200 | 0.0585 | - |
|
281 |
+
| 0.1903 | 2250 | 0.0034 | - |
|
282 |
+
| 0.1945 | 2300 | 0.0601 | - |
|
283 |
+
| 0.1987 | 2350 | 0.0061 | - |
|
284 |
+
| 0.2030 | 2400 | 0.0022 | - |
|
285 |
+
| 0.2072 | 2450 | 0.0037 | - |
|
286 |
+
| 0.2114 | 2500 | 0.0019 | - |
|
287 |
+
| 0.2156 | 2550 | 0.0012 | - |
|
288 |
+
| 0.2199 | 2600 | 0.0031 | - |
|
289 |
+
| 0.2241 | 2650 | 0.0028 | - |
|
290 |
+
| 0.2283 | 2700 | 0.0011 | - |
|
291 |
+
| 0.2326 | 2750 | 0.0019 | - |
|
292 |
+
| 0.2368 | 2800 | 0.0638 | - |
|
293 |
+
| 0.2410 | 2850 | 0.0018 | - |
|
294 |
+
| 0.2452 | 2900 | 0.0017 | - |
|
295 |
+
| 0.2495 | 2950 | 0.0021 | - |
|
296 |
+
| 0.2537 | 3000 | 0.0016 | - |
|
297 |
+
| 0.2579 | 3050 | 0.0013 | - |
|
298 |
+
| 0.2622 | 3100 | 0.0017 | - |
|
299 |
+
| 0.2664 | 3150 | 0.0101 | - |
|
300 |
+
| 0.2706 | 3200 | 0.0029 | - |
|
301 |
+
| 0.2748 | 3250 | 0.0013 | - |
|
302 |
+
| 0.2791 | 3300 | 0.002 | - |
|
303 |
+
| 0.2833 | 3350 | 0.0079 | - |
|
304 |
+
| 0.2875 | 3400 | 0.0013 | - |
|
305 |
+
| 0.2918 | 3450 | 0.001 | - |
|
306 |
+
| 0.2960 | 3500 | 0.0015 | - |
|
307 |
+
| 0.3002 | 3550 | 0.0013 | - |
|
308 |
+
| 0.3044 | 3600 | 0.0017 | - |
|
309 |
+
| 0.3087 | 3650 | 0.0012 | - |
|
310 |
+
| 0.3129 | 3700 | 0.0007 | - |
|
311 |
+
| 0.3171 | 3750 | 0.0019 | - |
|
312 |
+
| 0.3214 | 3800 | 0.0008 | - |
|
313 |
+
| 0.3256 | 3850 | 0.0008 | - |
|
314 |
+
| 0.3298 | 3900 | 0.0007 | - |
|
315 |
+
| 0.3340 | 3950 | 0.0007 | - |
|
316 |
+
| 0.3383 | 4000 | 0.001 | - |
|
317 |
+
| 0.3425 | 4050 | 0.0005 | - |
|
318 |
+
| 0.3467 | 4100 | 0.0008 | - |
|
319 |
+
| 0.3510 | 4150 | 0.0007 | - |
|
320 |
+
| 0.3552 | 4200 | 0.0014 | - |
|
321 |
+
| 0.3594 | 4250 | 0.0005 | - |
|
322 |
+
| 0.3636 | 4300 | 0.0008 | - |
|
323 |
+
| 0.3679 | 4350 | 0.0006 | - |
|
324 |
+
| 0.3721 | 4400 | 0.0011 | - |
|
325 |
+
| 0.3763 | 4450 | 0.0006 | - |
|
326 |
+
| 0.3805 | 4500 | 0.0007 | - |
|
327 |
+
| 0.3848 | 4550 | 0.0006 | - |
|
328 |
+
| 0.3890 | 4600 | 0.0003 | - |
|
329 |
+
| 0.3932 | 4650 | 0.0022 | - |
|
330 |
+
| 0.3975 | 4700 | 0.0007 | - |
|
331 |
+
| 0.4017 | 4750 | 0.0031 | - |
|
332 |
+
| 0.4059 | 4800 | 0.0013 | - |
|
333 |
+
| 0.4101 | 4850 | 0.0015 | - |
|
334 |
+
| 0.4144 | 4900 | 0.0017 | - |
|
335 |
+
| 0.4186 | 4950 | 0.0007 | - |
|
336 |
+
| 0.4228 | 5000 | 0.0006 | - |
|
337 |
+
| 0.4271 | 5050 | 0.0006 | - |
|
338 |
+
| 0.4313 | 5100 | 0.0013 | - |
|
339 |
+
| 0.4355 | 5150 | 0.0003 | - |
|
340 |
+
| 0.4397 | 5200 | 0.12 | - |
|
341 |
+
| 0.4440 | 5250 | 0.0005 | - |
|
342 |
+
| 0.4482 | 5300 | 0.0006 | - |
|
343 |
+
| 0.4524 | 5350 | 0.0016 | - |
|
344 |
+
| 0.4567 | 5400 | 0.0008 | - |
|
345 |
+
| 0.4609 | 5450 | 0.0118 | - |
|
346 |
+
| 0.4651 | 5500 | 0.0003 | - |
|
347 |
+
| 0.4693 | 5550 | 0.0542 | - |
|
348 |
+
| 0.4736 | 5600 | 0.0011 | - |
|
349 |
+
| 0.4778 | 5650 | 0.0004 | - |
|
350 |
+
| 0.4820 | 5700 | 0.001 | - |
|
351 |
+
| 0.4863 | 5750 | 0.0008 | - |
|
352 |
+
| 0.4905 | 5800 | 0.0008 | - |
|
353 |
+
| 0.4947 | 5850 | 0.0004 | - |
|
354 |
+
| 0.4989 | 5900 | 0.0008 | - |
|
355 |
+
| 0.5032 | 5950 | 0.0009 | - |
|
356 |
+
| 0.5074 | 6000 | 0.0005 | - |
|
357 |
+
| 0.5116 | 6050 | 0.0006 | - |
|
358 |
+
| 0.5159 | 6100 | 0.0012 | - |
|
359 |
+
| 0.5201 | 6150 | 0.0004 | - |
|
360 |
+
| 0.5243 | 6200 | 0.0005 | - |
|
361 |
+
| 0.5285 | 6250 | 0.0007 | - |
|
362 |
+
| 0.5328 | 6300 | 0.0009 | - |
|
363 |
+
| 0.5370 | 6350 | 0.0006 | - |
|
364 |
+
| 0.5412 | 6400 | 0.0007 | - |
|
365 |
+
| 0.5455 | 6450 | 0.0007 | - |
|
366 |
+
| 0.5497 | 6500 | 0.0003 | - |
|
367 |
+
| 0.5539 | 6550 | 0.0568 | - |
|
368 |
+
| 0.5581 | 6600 | 0.0006 | - |
|
369 |
+
| 0.5624 | 6650 | 0.0002 | - |
|
370 |
+
| 0.5666 | 6700 | 0.0006 | - |
|
371 |
+
| 0.5708 | 6750 | 0.0003 | - |
|
372 |
+
| 0.5751 | 6800 | 0.0003 | - |
|
373 |
+
| 0.5793 | 6850 | 0.0004 | - |
|
374 |
+
| 0.5835 | 6900 | 0.0006 | - |
|
375 |
+
| 0.5877 | 6950 | 0.0004 | - |
|
376 |
+
| 0.5920 | 7000 | 0.0004 | - |
|
377 |
+
| 0.5962 | 7050 | 0.0002 | - |
|
378 |
+
| 0.6004 | 7100 | 0.0002 | - |
|
379 |
+
| 0.6047 | 7150 | 0.001 | - |
|
380 |
+
| 0.6089 | 7200 | 0.0002 | - |
|
381 |
+
| 0.6131 | 7250 | 0.0004 | - |
|
382 |
+
| 0.6173 | 7300 | 0.0009 | - |
|
383 |
+
| 0.6216 | 7350 | 0.0003 | - |
|
384 |
+
| 0.6258 | 7400 | 0.0003 | - |
|
385 |
+
| 0.6300 | 7450 | 0.0018 | - |
|
386 |
+
| 0.6342 | 7500 | 0.0004 | - |
|
387 |
+
| 0.6385 | 7550 | 0.0035 | - |
|
388 |
+
| 0.6427 | 7600 | 0.0012 | - |
|
389 |
+
| 0.6469 | 7650 | 0.0005 | - |
|
390 |
+
| 0.6512 | 7700 | 0.0003 | - |
|
391 |
+
| 0.6554 | 7750 | 0.0003 | - |
|
392 |
+
| 0.6596 | 7800 | 0.0004 | - |
|
393 |
+
| 0.6638 | 7850 | 0.0004 | - |
|
394 |
+
| 0.6681 | 7900 | 0.0004 | - |
|
395 |
+
| 0.6723 | 7950 | 0.0003 | - |
|
396 |
+
| 0.6765 | 8000 | 0.0002 | - |
|
397 |
+
| 0.6808 | 8050 | 0.0002 | - |
|
398 |
+
| 0.6850 | 8100 | 0.0008 | - |
|
399 |
+
| 0.6892 | 8150 | 0.0003 | - |
|
400 |
+
| 0.6934 | 8200 | 0.0002 | - |
|
401 |
+
| 0.6977 | 8250 | 0.0003 | - |
|
402 |
+
| 0.7019 | 8300 | 0.0002 | - |
|
403 |
+
| 0.7061 | 8350 | 0.0024 | - |
|
404 |
+
| 0.7104 | 8400 | 0.0022 | - |
|
405 |
+
| 0.7146 | 8450 | 0.0004 | - |
|
406 |
+
| 0.7188 | 8500 | 0.0092 | - |
|
407 |
+
| 0.7230 | 8550 | 0.0002 | - |
|
408 |
+
| 0.7273 | 8600 | 0.0001 | - |
|
409 |
+
| 0.7315 | 8650 | 0.0002 | - |
|
410 |
+
| 0.7357 | 8700 | 0.0003 | - |
|
411 |
+
| 0.7400 | 8750 | 0.0005 | - |
|
412 |
+
| 0.7442 | 8800 | 0.0002 | - |
|
413 |
+
| 0.7484 | 8850 | 0.0005 | - |
|
414 |
+
| 0.7526 | 8900 | 0.0002 | - |
|
415 |
+
| 0.7569 | 8950 | 0.0002 | - |
|
416 |
+
| 0.7611 | 9000 | 0.0002 | - |
|
417 |
+
| 0.7653 | 9050 | 0.0002 | - |
|
418 |
+
| 0.7696 | 9100 | 0.0001 | - |
|
419 |
+
| 0.7738 | 9150 | 0.0002 | - |
|
420 |
+
| 0.7780 | 9200 | 0.0004 | - |
|
421 |
+
| 0.7822 | 9250 | 0.0003 | - |
|
422 |
+
| 0.7865 | 9300 | 0.0003 | - |
|
423 |
+
| 0.7907 | 9350 | 0.0002 | - |
|
424 |
+
| 0.7949 | 9400 | 0.0005 | - |
|
425 |
+
| 0.7992 | 9450 | 0.0002 | - |
|
426 |
+
| 0.8034 | 9500 | 0.0002 | - |
|
427 |
+
| 0.8076 | 9550 | 0.0017 | - |
|
428 |
+
| 0.8118 | 9600 | 0.0004 | - |
|
429 |
+
| 0.8161 | 9650 | 0.0003 | - |
|
430 |
+
| 0.8203 | 9700 | 0.0002 | - |
|
431 |
+
| 0.8245 | 9750 | 0.0002 | - |
|
432 |
+
| 0.8288 | 9800 | 0.0001 | - |
|
433 |
+
| 0.8330 | 9850 | 0.0001 | - |
|
434 |
+
| 0.8372 | 9900 | 0.0001 | - |
|
435 |
+
| 0.8414 | 9950 | 0.0005 | - |
|
436 |
+
| 0.8457 | 10000 | 0.0001 | - |
|
437 |
+
| 0.8499 | 10050 | 0.0001 | - |
|
438 |
+
| 0.8541 | 10100 | 0.0002 | - |
|
439 |
+
| 0.8584 | 10150 | 0.0002 | - |
|
440 |
+
| 0.8626 | 10200 | 0.0003 | - |
|
441 |
+
| 0.8668 | 10250 | 0.0003 | - |
|
442 |
+
| 0.8710 | 10300 | 0.0002 | - |
|
443 |
+
| 0.8753 | 10350 | 0.0002 | - |
|
444 |
+
| 0.8795 | 10400 | 0.001 | - |
|
445 |
+
| 0.8837 | 10450 | 0.0008 | - |
|
446 |
+
| 0.8879 | 10500 | 0.0005 | - |
|
447 |
+
| 0.8922 | 10550 | 0.0017 | - |
|
448 |
+
| 0.8964 | 10600 | 0.0606 | - |
|
449 |
+
| 0.9006 | 10650 | 0.0002 | - |
|
450 |
+
| 0.9049 | 10700 | 0.0003 | - |
|
451 |
+
| 0.9091 | 10750 | 0.0005 | - |
|
452 |
+
| 0.9133 | 10800 | 0.0008 | - |
|
453 |
+
| 0.9175 | 10850 | 0.0003 | - |
|
454 |
+
| 0.9218 | 10900 | 0.002 | - |
|
455 |
+
| 0.9260 | 10950 | 0.0003 | - |
|
456 |
+
| 0.9302 | 11000 | 0.0003 | - |
|
457 |
+
| 0.9345 | 11050 | 0.0003 | - |
|
458 |
+
| 0.9387 | 11100 | 0.0243 | - |
|
459 |
+
| 0.9429 | 11150 | 0.0016 | - |
|
460 |
+
| 0.9471 | 11200 | 0.021 | - |
|
461 |
+
| 0.9514 | 11250 | 0.0003 | - |
|
462 |
+
| 0.9556 | 11300 | 0.0006 | - |
|
463 |
+
| 0.9598 | 11350 | 0.0166 | - |
|
464 |
+
| 0.9641 | 11400 | 0.0014 | - |
|
465 |
+
| 0.9683 | 11450 | 0.0004 | - |
|
466 |
+
| 0.9725 | 11500 | 0.0006 | - |
|
467 |
+
| 0.9767 | 11550 | 0.0001 | - |
|
468 |
+
| 0.9810 | 11600 | 0.0002 | - |
|
469 |
+
| 0.9852 | 11650 | 0.0021 | - |
|
470 |
+
| 0.9894 | 11700 | 0.0004 | - |
|
471 |
+
| 0.9937 | 11750 | 0.0002 | - |
|
472 |
+
| 0.9979 | 11800 | 0.0003 | - |
|
473 |
+
| 1.0 | 11825 | - | 0.0019 |
|
474 |
+
| 1.0021 | 11850 | 0.0002 | - |
|
475 |
+
| 1.0063 | 11900 | 0.0002 | - |
|
476 |
+
| 1.0106 | 11950 | 0.0002 | - |
|
477 |
+
| 1.0148 | 12000 | 0.0002 | - |
|
478 |
+
| 1.0190 | 12050 | 0.0002 | - |
|
479 |
+
| 1.0233 | 12100 | 0.0002 | - |
|
480 |
+
| 1.0275 | 12150 | 0.0002 | - |
|
481 |
+
| 1.0317 | 12200 | 0.0002 | - |
|
482 |
+
| 1.0359 | 12250 | 0.0005 | - |
|
483 |
+
| 1.0402 | 12300 | 0.0002 | - |
|
484 |
+
| 1.0444 | 12350 | 0.0002 | - |
|
485 |
+
| 1.0486 | 12400 | 0.0004 | - |
|
486 |
+
| 1.0529 | 12450 | 0.0002 | - |
|
487 |
+
| 1.0571 | 12500 | 0.0002 | - |
|
488 |
+
| 1.0613 | 12550 | 0.0001 | - |
|
489 |
+
| 1.0655 | 12600 | 0.0001 | - |
|
490 |
+
| 1.0698 | 12650 | 0.0001 | - |
|
491 |
+
| 1.0740 | 12700 | 0.0001 | - |
|
492 |
+
| 1.0782 | 12750 | 0.0001 | - |
|
493 |
+
| 1.0825 | 12800 | 0.0002 | - |
|
494 |
+
| 1.0867 | 12850 | 0.0001 | - |
|
495 |
+
| 1.0909 | 12900 | 0.0002 | - |
|
496 |
+
| 1.0951 | 12950 | 0.0002 | - |
|
497 |
+
| 1.0994 | 13000 | 0.0002 | - |
|
498 |
+
| 1.1036 | 13050 | 0.0002 | - |
|
499 |
+
| 1.1078 | 13100 | 0.0001 | - |
|
500 |
+
| 1.1121 | 13150 | 0.0002 | - |
|
501 |
+
| 1.1163 | 13200 | 0.0236 | - |
|
502 |
+
| 1.1205 | 13250 | 0.0002 | - |
|
503 |
+
| 1.1247 | 13300 | 0.0001 | - |
|
504 |
+
| 1.1290 | 13350 | 0.0023 | - |
|
505 |
+
| 1.1332 | 13400 | 0.0003 | - |
|
506 |
+
| 1.1374 | 13450 | 0.0001 | - |
|
507 |
+
| 1.1416 | 13500 | 0.0003 | - |
|
508 |
+
| 1.1459 | 13550 | 0.0003 | - |
|
509 |
+
| 1.1501 | 13600 | 0.0004 | - |
|
510 |
+
| 1.1543 | 13650 | 0.0002 | - |
|
511 |
+
| 1.1586 | 13700 | 0.0002 | - |
|
512 |
+
| 1.1628 | 13750 | 0.0001 | - |
|
513 |
+
| 1.1670 | 13800 | 0.0001 | - |
|
514 |
+
| 1.1712 | 13850 | 0.0001 | - |
|
515 |
+
| 1.1755 | 13900 | 0.0001 | - |
|
516 |
+
| 1.1797 | 13950 | 0.0001 | - |
|
517 |
+
| 1.1839 | 14000 | 0.0001 | - |
|
518 |
+
| 1.1882 | 14050 | 0.0002 | - |
|
519 |
+
| 1.1924 | 14100 | 0.0002 | - |
|
520 |
+
| 1.1966 | 14150 | 0.0001 | - |
|
521 |
+
| 1.2008 | 14200 | 0.0002 | - |
|
522 |
+
| 1.2051 | 14250 | 0.0003 | - |
|
523 |
+
| 1.2093 | 14300 | 0.0001 | - |
|
524 |
+
| 1.2135 | 14350 | 0.0001 | - |
|
525 |
+
| 1.2178 | 14400 | 0.0002 | - |
|
526 |
+
| 1.2220 | 14450 | 0.001 | - |
|
527 |
+
| 1.2262 | 14500 | 0.0001 | - |
|
528 |
+
| 1.2304 | 14550 | 0.0001 | - |
|
529 |
+
| 1.2347 | 14600 | 0.0001 | - |
|
530 |
+
| 1.2389 | 14650 | 0.0002 | - |
|
531 |
+
| 1.2431 | 14700 | 0.0001 | - |
|
532 |
+
| 1.2474 | 14750 | 0.0002 | - |
|
533 |
+
| 1.2516 | 14800 | 0.0001 | - |
|
534 |
+
| 1.2558 | 14850 | 0.0001 | - |
|
535 |
+
| 1.2600 | 14900 | 0.0001 | - |
|
536 |
+
| 1.2643 | 14950 | 0.0002 | - |
|
537 |
+
| 1.2685 | 15000 | 0.0001 | - |
|
538 |
+
| 1.2727 | 15050 | 0.0061 | - |
|
539 |
+
| 1.2770 | 15100 | 0.0001 | - |
|
540 |
+
| 1.2812 | 15150 | 0.0004 | - |
|
541 |
+
| 1.2854 | 15200 | 0.0002 | - |
|
542 |
+
| 1.2896 | 15250 | 0.0002 | - |
|
543 |
+
| 1.2939 | 15300 | 0.0001 | - |
|
544 |
+
| 1.2981 | 15350 | 0.0001 | - |
|
545 |
+
| 1.3023 | 15400 | 0.0001 | - |
|
546 |
+
| 1.3066 | 15450 | 0.0002 | - |
|
547 |
+
| 1.3108 | 15500 | 0.0001 | - |
|
548 |
+
| 1.3150 | 15550 | 0.0001 | - |
|
549 |
+
| 1.3192 | 15600 | 0.002 | - |
|
550 |
+
| 1.3235 | 15650 | 0.0004 | - |
|
551 |
+
| 1.3277 | 15700 | 0.0001 | - |
|
552 |
+
| 1.3319 | 15750 | 0.0001 | - |
|
553 |
+
| 1.3362 | 15800 | 0.0002 | - |
|
554 |
+
| 1.3404 | 15850 | 0.0001 | - |
|
555 |
+
| 1.3446 | 15900 | 0.0001 | - |
|
556 |
+
| 1.3488 | 15950 | 0.0001 | - |
|
557 |
+
| 1.3531 | 16000 | 0.0002 | - |
|
558 |
+
| 1.3573 | 16050 | 0.0001 | - |
|
559 |
+
| 1.3615 | 16100 | 0.0003 | - |
|
560 |
+
| 1.3658 | 16150 | 0.0001 | - |
|
561 |
+
| 1.3700 | 16200 | 0.0001 | - |
|
562 |
+
| 1.3742 | 16250 | 0.0001 | - |
|
563 |
+
| 1.3784 | 16300 | 0.0001 | - |
|
564 |
+
| 1.3827 | 16350 | 0.0001 | - |
|
565 |
+
| 1.3869 | 16400 | 0.0001 | - |
|
566 |
+
| 1.3911 | 16450 | 0.0004 | - |
|
567 |
+
| 1.3953 | 16500 | 0.0002 | - |
|
568 |
+
| 1.3996 | 16550 | 0.0001 | - |
|
569 |
+
| 1.4038 | 16600 | 0.0001 | - |
|
570 |
+
| 1.4080 | 16650 | 0.0001 | - |
|
571 |
+
| 1.4123 | 16700 | 0.0001 | - |
|
572 |
+
| 1.4165 | 16750 | 0.0001 | - |
|
573 |
+
| 1.4207 | 16800 | 0.0001 | - |
|
574 |
+
| 1.4249 | 16850 | 0.0001 | - |
|
575 |
+
| 1.4292 | 16900 | 0.0001 | - |
|
576 |
+
| 1.4334 | 16950 | 0.0024 | - |
|
577 |
+
| 1.4376 | 17000 | 0.0001 | - |
|
578 |
+
| 1.4419 | 17050 | 0.0002 | - |
|
579 |
+
| 1.4461 | 17100 | 0.0001 | - |
|
580 |
+
| 1.4503 | 17150 | 0.0001 | - |
|
581 |
+
| 1.4545 | 17200 | 0.0001 | - |
|
582 |
+
| 1.4588 | 17250 | 0.0001 | - |
|
583 |
+
| 1.4630 | 17300 | 0.0606 | - |
|
584 |
+
| 1.4672 | 17350 | 0.0004 | - |
|
585 |
+
| 1.4715 | 17400 | 0.0001 | - |
|
586 |
+
| 1.4757 | 17450 | 0.0007 | - |
|
587 |
+
| 1.4799 | 17500 | 0.0001 | - |
|
588 |
+
| 1.4841 | 17550 | 0.0001 | - |
|
589 |
+
| 1.4884 | 17600 | 0.0001 | - |
|
590 |
+
| 1.4926 | 17650 | 0.0002 | - |
|
591 |
+
| 1.4968 | 17700 | 0.0015 | - |
|
592 |
+
| 1.5011 | 17750 | 0.0001 | - |
|
593 |
+
| 1.5053 | 17800 | 0.0001 | - |
|
594 |
+
| 1.5095 | 17850 | 0.0002 | - |
|
595 |
+
| 1.5137 | 17900 | 0.0002 | - |
|
596 |
+
| 1.5180 | 17950 | 0.0001 | - |
|
597 |
+
| 1.5222 | 18000 | 0.0001 | - |
|
598 |
+
| 1.5264 | 18050 | 0.0001 | - |
|
599 |
+
| 1.5307 | 18100 | 0.0001 | - |
|
600 |
+
| 1.5349 | 18150 | 0.0002 | - |
|
601 |
+
| 1.5391 | 18200 | 0.0001 | - |
|
602 |
+
| 1.5433 | 18250 | 0.0001 | - |
|
603 |
+
| 1.5476 | 18300 | 0.0001 | - |
|
604 |
+
| 1.5518 | 18350 | 0.0001 | - |
|
605 |
+
| 1.5560 | 18400 | 0.0002 | - |
|
606 |
+
| 1.5603 | 18450 | 0.0001 | - |
|
607 |
+
| 1.5645 | 18500 | 0.0001 | - |
|
608 |
+
| 1.5687 | 18550 | 0.0001 | - |
|
609 |
+
| 1.5729 | 18600 | 0.0001 | - |
|
610 |
+
| 1.5772 | 18650 | 0.0001 | - |
|
611 |
+
| 1.5814 | 18700 | 0.0002 | - |
|
612 |
+
| 1.5856 | 18750 | 0.0001 | - |
|
613 |
+
| 1.5899 | 18800 | 0.0001 | - |
|
614 |
+
| 1.5941 | 18850 | 0.0001 | - |
|
615 |
+
| 1.5983 | 18900 | 0.0009 | - |
|
616 |
+
| 1.6025 | 18950 | 0.0001 | - |
|
617 |
+
| 1.6068 | 19000 | 0.0002 | - |
|
618 |
+
| 1.6110 | 19050 | 0.0013 | - |
|
619 |
+
| 1.6152 | 19100 | 0.0001 | - |
|
620 |
+
| 1.6195 | 19150 | 0.0005 | - |
|
621 |
+
| 1.6237 | 19200 | 0.0001 | - |
|
622 |
+
| 1.6279 | 19250 | 0.0016 | - |
|
623 |
+
| 1.6321 | 19300 | 0.0001 | - |
|
624 |
+
| 1.6364 | 19350 | 0.0001 | - |
|
625 |
+
| 1.6406 | 19400 | 0.0015 | - |
|
626 |
+
| 1.6448 | 19450 | 0.0001 | - |
|
627 |
+
| 1.6490 | 19500 | 0.0001 | - |
|
628 |
+
| 1.6533 | 19550 | 0.0001 | - |
|
629 |
+
| 1.6575 | 19600 | 0.0001 | - |
|
630 |
+
| 1.6617 | 19650 | 0.0001 | - |
|
631 |
+
| 1.6660 | 19700 | 0.0001 | - |
|
632 |
+
| 1.6702 | 19750 | 0.0001 | - |
|
633 |
+
| 1.6744 | 19800 | 0.0001 | - |
|
634 |
+
| 1.6786 | 19850 | 0.0001 | - |
|
635 |
+
| 1.6829 | 19900 | 0.0001 | - |
|
636 |
+
| 1.6871 | 19950 | 0.0001 | - |
|
637 |
+
| 1.6913 | 20000 | 0.0001 | - |
|
638 |
+
| 1.6956 | 20050 | 0.0001 | - |
|
639 |
+
| 1.6998 | 20100 | 0.0001 | - |
|
640 |
+
| 1.7040 | 20150 | 0.0001 | - |
|
641 |
+
| 1.7082 | 20200 | 0.0001 | - |
|
642 |
+
| 1.7125 | 20250 | 0.0001 | - |
|
643 |
+
| 1.7167 | 20300 | 0.0001 | - |
|
644 |
+
| 1.7209 | 20350 | 0.0001 | - |
|
645 |
+
| 1.7252 | 20400 | 0.0001 | - |
|
646 |
+
| 1.7294 | 20450 | 0.0001 | - |
|
647 |
+
| 1.7336 | 20500 | 0.002 | - |
|
648 |
+
| 1.7378 | 20550 | 0.0001 | - |
|
649 |
+
| 1.7421 | 20600 | 0.0001 | - |
|
650 |
+
| 1.7463 | 20650 | 0.0001 | - |
|
651 |
+
| 1.7505 | 20700 | 0.0001 | - |
|
652 |
+
| 1.7548 | 20750 | 0.0001 | - |
|
653 |
+
| 1.7590 | 20800 | 0.0001 | - |
|
654 |
+
| 1.7632 | 20850 | 0.0001 | - |
|
655 |
+
| 1.7674 | 20900 | 0.0001 | - |
|
656 |
+
| 1.7717 | 20950 | 0.0002 | - |
|
657 |
+
| 1.7759 | 21000 | 0.0001 | - |
|
658 |
+
| 1.7801 | 21050 | 0.0004 | - |
|
659 |
+
| 1.7844 | 21100 | 0.0002 | - |
|
660 |
+
| 1.7886 | 21150 | 0.0599 | - |
|
661 |
+
| 1.7928 | 21200 | 0.0001 | - |
|
662 |
+
| 1.7970 | 21250 | 0.0001 | - |
|
663 |
+
| 1.8013 | 21300 | 0.0001 | - |
|
664 |
+
| 1.8055 | 21350 | 0.0001 | - |
|
665 |
+
| 1.8097 | 21400 | 0.0001 | - |
|
666 |
+
| 1.8140 | 21450 | 0.0001 | - |
|
667 |
+
| 1.8182 | 21500 | 0.0001 | - |
|
668 |
+
| 1.8224 | 21550 | 0.0001 | - |
|
669 |
+
| 1.8266 | 21600 | 0.0001 | - |
|
670 |
+
| 1.8309 | 21650 | 0.0013 | - |
|
671 |
+
| 1.8351 | 21700 | 0.0002 | - |
|
672 |
+
| 1.8393 | 21750 | 0.0001 | - |
|
673 |
+
| 1.8436 | 21800 | 0.0001 | - |
|
674 |
+
| 1.8478 | 21850 | 0.0001 | - |
|
675 |
+
| 1.8520 | 21900 | 0.0001 | - |
|
676 |
+
| 1.8562 | 21950 | 0.0001 | - |
|
677 |
+
| 1.8605 | 22000 | 0.0001 | - |
|
678 |
+
| 1.8647 | 22050 | 0.0001 | - |
|
679 |
+
| 1.8689 | 22100 | 0.0001 | - |
|
680 |
+
| 1.8732 | 22150 | 0.0 | - |
|
681 |
+
| 1.8774 | 22200 | 0.0001 | - |
|
682 |
+
| 1.8816 | 22250 | 0.0001 | - |
|
683 |
+
| 1.8858 | 22300 | 0.0001 | - |
|
684 |
+
| 1.8901 | 22350 | 0.0001 | - |
|
685 |
+
| 1.8943 | 22400 | 0.0001 | - |
|
686 |
+
| 1.8985 | 22450 | 0.0001 | - |
|
687 |
+
| 1.9027 | 22500 | 0.0001 | - |
|
688 |
+
| 1.9070 | 22550 | 0.0001 | - |
|
689 |
+
| 1.9112 | 22600 | 0.0001 | - |
|
690 |
+
| 1.9154 | 22650 | 0.0001 | - |
|
691 |
+
| 1.9197 | 22700 | 0.0001 | - |
|
692 |
+
| 1.9239 | 22750 | 0.0001 | - |
|
693 |
+
| 1.9281 | 22800 | 0.0001 | - |
|
694 |
+
| 1.9323 | 22850 | 0.0001 | - |
|
695 |
+
| 1.9366 | 22900 | 0.0001 | - |
|
696 |
+
| 1.9408 | 22950 | 0.0 | - |
|
697 |
+
| 1.9450 | 23000 | 0.0016 | - |
|
698 |
+
| 1.9493 | 23050 | 0.0001 | - |
|
699 |
+
| 1.9535 | 23100 | 0.0002 | - |
|
700 |
+
| 1.9577 | 23150 | 0.0001 | - |
|
701 |
+
| 1.9619 | 23200 | 0.0001 | - |
|
702 |
+
| 1.9662 | 23250 | 0.0001 | - |
|
703 |
+
| 1.9704 | 23300 | 0.0001 | - |
|
704 |
+
| 1.9746 | 23350 | 0.0001 | - |
|
705 |
+
| 1.9789 | 23400 | 0.0001 | - |
|
706 |
+
| 1.9831 | 23450 | 0.0001 | - |
|
707 |
+
| 1.9873 | 23500 | 0.0016 | - |
|
708 |
+
| 1.9915 | 23550 | 0.0001 | - |
|
709 |
+
| 1.9958 | 23600 | 0.0001 | - |
|
710 |
+
| 2.0 | 23650 | 0.0001 | 0.0008 |
|
711 |
+
| 2.0042 | 23700 | 0.0001 | - |
|
712 |
+
| 2.0085 | 23750 | 0.0017 | - |
|
713 |
+
| 2.0127 | 23800 | 0.0001 | - |
|
714 |
+
| 2.0169 | 23850 | 0.0 | - |
|
715 |
+
| 2.0211 | 23900 | 0.0001 | - |
|
716 |
+
| 2.0254 | 23950 | 0.0001 | - |
|
717 |
+
| 2.0296 | 24000 | 0.0001 | - |
|
718 |
+
| 2.0338 | 24050 | 0.0001 | - |
|
719 |
+
| 2.0381 | 24100 | 0.0001 | - |
|
720 |
+
| 2.0423 | 24150 | 0.0001 | - |
|
721 |
+
| 2.0465 | 24200 | 0.0001 | - |
|
722 |
+
| 2.0507 | 24250 | 0.0001 | - |
|
723 |
+
| 2.0550 | 24300 | 0.0001 | - |
|
724 |
+
| 2.0592 | 24350 | 0.0001 | - |
|
725 |
+
| 2.0634 | 24400 | 0.0001 | - |
|
726 |
+
| 2.0677 | 24450 | 0.0 | - |
|
727 |
+
| 2.0719 | 24500 | 0.0001 | - |
|
728 |
+
| 2.0761 | 24550 | 0.0001 | - |
|
729 |
+
| 2.0803 | 24600 | 0.0001 | - |
|
730 |
+
| 2.0846 | 24650 | 0.0001 | - |
|
731 |
+
| 2.0888 | 24700 | 0.0002 | - |
|
732 |
+
| 2.0930 | 24750 | 0.0002 | - |
|
733 |
+
| 2.0973 | 24800 | 0.0001 | - |
|
734 |
+
| 2.1015 | 24850 | 0.0006 | - |
|
735 |
+
| 2.1057 | 24900 | 0.0579 | - |
|
736 |
+
| 2.1099 | 24950 | 0.0001 | - |
|
737 |
+
| 2.1142 | 25000 | 0.0004 | - |
|
738 |
+
| 2.1184 | 25050 | 0.0011 | - |
|
739 |
+
| 2.1226 | 25100 | 0.0001 | - |
|
740 |
+
| 2.1268 | 25150 | 0.0002 | - |
|
741 |
+
| 2.1311 | 25200 | 0.0003 | - |
|
742 |
+
| 2.1353 | 25250 | 0.0001 | - |
|
743 |
+
| 2.1395 | 25300 | 0.0014 | - |
|
744 |
+
| 2.1438 | 25350 | 0.0001 | - |
|
745 |
+
| 2.1480 | 25400 | 0.0002 | - |
|
746 |
+
| 2.1522 | 25450 | 0.0012 | - |
|
747 |
+
| 2.1564 | 25500 | 0.0001 | - |
|
748 |
+
| 2.1607 | 25550 | 0.0001 | - |
|
749 |
+
| 2.1649 | 25600 | 0.0002 | - |
|
750 |
+
| 2.1691 | 25650 | 0.0001 | - |
|
751 |
+
| 2.1734 | 25700 | 0.0001 | - |
|
752 |
+
| 2.1776 | 25750 | 0.0001 | - |
|
753 |
+
| 2.1818 | 25800 | 0.0001 | - |
|
754 |
+
| 2.1860 | 25850 | 0.0544 | - |
|
755 |
+
| 2.1903 | 25900 | 0.0001 | - |
|
756 |
+
| 2.1945 | 25950 | 0.0001 | - |
|
757 |
+
| 2.1987 | 26000 | 0.0001 | - |
|
758 |
+
| 2.2030 | 26050 | 0.0001 | - |
|
759 |
+
| 2.2072 | 26100 | 0.0001 | - |
|
760 |
+
| 2.2114 | 26150 | 0.0001 | - |
|
761 |
+
| 2.2156 | 26200 | 0.0002 | - |
|
762 |
+
| 2.2199 | 26250 | 0.0 | - |
|
763 |
+
| 2.2241 | 26300 | 0.0001 | - |
|
764 |
+
| 2.2283 | 26350 | 0.0002 | - |
|
765 |
+
| 2.2326 | 26400 | 0.0001 | - |
|
766 |
+
| 2.2368 | 26450 | 0.0001 | - |
|
767 |
+
| 2.2410 | 26500 | 0.0602 | - |
|
768 |
+
| 2.2452 | 26550 | 0.0022 | - |
|
769 |
+
| 2.2495 | 26600 | 0.0001 | - |
|
770 |
+
| 2.2537 | 26650 | 0.0003 | - |
|
771 |
+
| 2.2579 | 26700 | 0.0002 | - |
|
772 |
+
| 2.2622 | 26750 | 0.0001 | - |
|
773 |
+
| 2.2664 | 26800 | 0.0001 | - |
|
774 |
+
| 2.2706 | 26850 | 0.0001 | - |
|
775 |
+
| 2.2748 | 26900 | 0.0001 | - |
|
776 |
+
| 2.2791 | 26950 | 0.0001 | - |
|
777 |
+
| 2.2833 | 27000 | 0.0001 | - |
|
778 |
+
| 2.2875 | 27050 | 0.0001 | - |
|
779 |
+
| 2.2918 | 27100 | 0.0001 | - |
|
780 |
+
| 2.2960 | 27150 | 0.0001 | - |
|
781 |
+
| 2.3002 | 27200 | 0.0001 | - |
|
782 |
+
| 2.3044 | 27250 | 0.0001 | - |
|
783 |
+
| 2.3087 | 27300 | 0.0001 | - |
|
784 |
+
| 2.3129 | 27350 | 0.0003 | - |
|
785 |
+
| 2.3171 | 27400 | 0.0001 | - |
|
786 |
+
| 2.3214 | 27450 | 0.0001 | - |
|
787 |
+
| 2.3256 | 27500 | 0.0001 | - |
|
788 |
+
| 2.3298 | 27550 | 0.0001 | - |
|
789 |
+
| 2.3340 | 27600 | 0.0001 | - |
|
790 |
+
| 2.3383 | 27650 | 0.0001 | - |
|
791 |
+
| 2.3425 | 27700 | 0.0015 | - |
|
792 |
+
| 2.3467 | 27750 | 0.001 | - |
|
793 |
+
| 2.3510 | 27800 | 0.0002 | - |
|
794 |
+
| 2.3552 | 27850 | 0.0001 | - |
|
795 |
+
| 2.3594 | 27900 | 0.0001 | - |
|
796 |
+
| 2.3636 | 27950 | 0.0001 | - |
|
797 |
+
| 2.3679 | 28000 | 0.0002 | - |
|
798 |
+
| 2.3721 | 28050 | 0.0001 | - |
|
799 |
+
| 2.3763 | 28100 | 0.0001 | - |
|
800 |
+
| 2.3805 | 28150 | 0.001 | - |
|
801 |
+
| 2.3848 | 28200 | 0.0001 | - |
|
802 |
+
| 2.3890 | 28250 | 0.0001 | - |
|
803 |
+
| 2.3932 | 28300 | 0.0001 | - |
|
804 |
+
| 2.3975 | 28350 | 0.0001 | - |
|
805 |
+
| 2.4017 | 28400 | 0.0002 | - |
|
806 |
+
| 2.4059 | 28450 | 0.0001 | - |
|
807 |
+
| 2.4101 | 28500 | 0.0001 | - |
|
808 |
+
| 2.4144 | 28550 | 0.0001 | - |
|
809 |
+
| 2.4186 | 28600 | 0.0001 | - |
|
810 |
+
| 2.4228 | 28650 | 0.0001 | - |
|
811 |
+
| 2.4271 | 28700 | 0.0001 | - |
|
812 |
+
| 2.4313 | 28750 | 0.0001 | - |
|
813 |
+
| 2.4355 | 28800 | 0.0001 | - |
|
814 |
+
| 2.4397 | 28850 | 0.0001 | - |
|
815 |
+
| 2.4440 | 28900 | 0.0001 | - |
|
816 |
+
| 2.4482 | 28950 | 0.0001 | - |
|
817 |
+
| 2.4524 | 29000 | 0.0001 | - |
|
818 |
+
| 2.4567 | 29050 | 0.0021 | - |
|
819 |
+
| 2.4609 | 29100 | 0.0001 | - |
|
820 |
+
| 2.4651 | 29150 | 0.0001 | - |
|
821 |
+
| 2.4693 | 29200 | 0.0001 | - |
|
822 |
+
| 2.4736 | 29250 | 0.0 | - |
|
823 |
+
| 2.4778 | 29300 | 0.0002 | - |
|
824 |
+
| 2.4820 | 29350 | 0.0002 | - |
|
825 |
+
| 2.4863 | 29400 | 0.0001 | - |
|
826 |
+
| 2.4905 | 29450 | 0.0001 | - |
|
827 |
+
| 2.4947 | 29500 | 0.0002 | - |
|
828 |
+
| 2.4989 | 29550 | 0.0013 | - |
|
829 |
+
| 2.5032 | 29600 | 0.0001 | - |
|
830 |
+
| 2.5074 | 29650 | 0.0001 | - |
|
831 |
+
| 2.5116 | 29700 | 0.0001 | - |
|
832 |
+
| 2.5159 | 29750 | 0.0001 | - |
|
833 |
+
| 2.5201 | 29800 | 0.0015 | - |
|
834 |
+
| 2.5243 | 29850 | 0.0001 | - |
|
835 |
+
| 2.5285 | 29900 | 0.0001 | - |
|
836 |
+
| 2.5328 | 29950 | 0.0001 | - |
|
837 |
+
| 2.5370 | 30000 | 0.0002 | - |
|
838 |
+
| 2.5412 | 30050 | 0.0001 | - |
|
839 |
+
| 2.5455 | 30100 | 0.0001 | - |
|
840 |
+
| 2.5497 | 30150 | 0.0001 | - |
|
841 |
+
| 2.5539 | 30200 | 0.0001 | - |
|
842 |
+
| 2.5581 | 30250 | 0.0001 | - |
|
843 |
+
| 2.5624 | 30300 | 0.0002 | - |
|
844 |
+
| 2.5666 | 30350 | 0.0001 | - |
|
845 |
+
| 2.5708 | 30400 | 0.0001 | - |
|
846 |
+
| 2.5751 | 30450 | 0.0001 | - |
|
847 |
+
| 2.5793 | 30500 | 0.0001 | - |
|
848 |
+
| 2.5835 | 30550 | 0.0001 | - |
|
849 |
+
| 2.5877 | 30600 | 0.0001 | - |
|
850 |
+
| 2.5920 | 30650 | 0.0001 | - |
|
851 |
+
| 2.5962 | 30700 | 0.0 | - |
|
852 |
+
| 2.6004 | 30750 | 0.0001 | - |
|
853 |
+
| 2.6047 | 30800 | 0.0001 | - |
|
854 |
+
| 2.6089 | 30850 | 0.0001 | - |
|
855 |
+
| 2.6131 | 30900 | 0.0001 | - |
|
856 |
+
| 2.6173 | 30950 | 0.0001 | - |
|
857 |
+
| 2.6216 | 31000 | 0.0001 | - |
|
858 |
+
| 2.6258 | 31050 | 0.0001 | - |
|
859 |
+
| 2.6300 | 31100 | 0.0001 | - |
|
860 |
+
| 2.6342 | 31150 | 0.0001 | - |
|
861 |
+
| 2.6385 | 31200 | 0.0001 | - |
|
862 |
+
| 2.6427 | 31250 | 0.0001 | - |
|
863 |
+
| 2.6469 | 31300 | 0.0001 | - |
|
864 |
+
| 2.6512 | 31350 | 0.0024 | - |
|
865 |
+
| 2.6554 | 31400 | 0.0001 | - |
|
866 |
+
| 2.6596 | 31450 | 0.0001 | - |
|
867 |
+
| 2.6638 | 31500 | 0.0025 | - |
|
868 |
+
| 2.6681 | 31550 | 0.0001 | - |
|
869 |
+
| 2.6723 | 31600 | 0.0001 | - |
|
870 |
+
| 2.6765 | 31650 | 0.0002 | - |
|
871 |
+
| 2.6808 | 31700 | 0.0001 | - |
|
872 |
+
| 2.6850 | 31750 | 0.0 | - |
|
873 |
+
| 2.6892 | 31800 | 0.0001 | - |
|
874 |
+
| 2.6934 | 31850 | 0.0001 | - |
|
875 |
+
| 2.6977 | 31900 | 0.0001 | - |
|
876 |
+
| 2.7019 | 31950 | 0.0001 | - |
|
877 |
+
| 2.7061 | 32000 | 0.0001 | - |
|
878 |
+
| 2.7104 | 32050 | 0.0001 | - |
|
879 |
+
| 2.7146 | 32100 | 0.0001 | - |
|
880 |
+
| 2.7188 | 32150 | 0.0001 | - |
|
881 |
+
| 2.7230 | 32200 | 0.0001 | - |
|
882 |
+
| 2.7273 | 32250 | 0.0001 | - |
|
883 |
+
| 2.7315 | 32300 | 0.0 | - |
|
884 |
+
| 2.7357 | 32350 | 0.0001 | - |
|
885 |
+
| 2.7400 | 32400 | 0.0001 | - |
|
886 |
+
| 2.7442 | 32450 | 0.0001 | - |
|
887 |
+
| 2.7484 | 32500 | 0.0001 | - |
|
888 |
+
| 2.7526 | 32550 | 0.0001 | - |
|
889 |
+
| 2.7569 | 32600 | 0.0016 | - |
|
890 |
+
| 2.7611 | 32650 | 0.0001 | - |
|
891 |
+
| 2.7653 | 32700 | 0.0001 | - |
|
892 |
+
| 2.7696 | 32750 | 0.0001 | - |
|
893 |
+
| 2.7738 | 32800 | 0.0001 | - |
|
894 |
+
| 2.7780 | 32850 | 0.0001 | - |
|
895 |
+
| 2.7822 | 32900 | 0.0001 | - |
|
896 |
+
| 2.7865 | 32950 | 0.0001 | - |
|
897 |
+
| 2.7907 | 33000 | 0.0001 | - |
|
898 |
+
| 2.7949 | 33050 | 0.0001 | - |
|
899 |
+
| 2.7992 | 33100 | 0.0001 | - |
|
900 |
+
| 2.8034 | 33150 | 0.0001 | - |
|
901 |
+
| 2.8076 | 33200 | 0.0001 | - |
|
902 |
+
| 2.8118 | 33250 | 0.0001 | - |
|
903 |
+
| 2.8161 | 33300 | 0.0001 | - |
|
904 |
+
| 2.8203 | 33350 | 0.0001 | - |
|
905 |
+
| 2.8245 | 33400 | 0.0001 | - |
|
906 |
+
| 2.8288 | 33450 | 0.0001 | - |
|
907 |
+
| 2.8330 | 33500 | 0.0 | - |
|
908 |
+
| 2.8372 | 33550 | 0.0 | - |
|
909 |
+
| 2.8414 | 33600 | 0.0001 | - |
|
910 |
+
| 2.8457 | 33650 | 0.0001 | - |
|
911 |
+
| 2.8499 | 33700 | 0.0001 | - |
|
912 |
+
| 2.8541 | 33750 | 0.0016 | - |
|
913 |
+
| 2.8584 | 33800 | 0.0001 | - |
|
914 |
+
| 2.8626 | 33850 | 0.0001 | - |
|
915 |
+
| 2.8668 | 33900 | 0.0001 | - |
|
916 |
+
| 2.8710 | 33950 | 0.0001 | - |
|
917 |
+
| 2.8753 | 34000 | 0.0001 | - |
|
918 |
+
| 2.8795 | 34050 | 0.0001 | - |
|
919 |
+
| 2.8837 | 34100 | 0.0001 | - |
|
920 |
+
| 2.8879 | 34150 | 0.0001 | - |
|
921 |
+
| 2.8922 | 34200 | 0.0 | - |
|
922 |
+
| 2.8964 | 34250 | 0.0001 | - |
|
923 |
+
| 2.9006 | 34300 | 0.0001 | - |
|
924 |
+
| 2.9049 | 34350 | 0.0001 | - |
|
925 |
+
| 2.9091 | 34400 | 0.0001 | - |
|
926 |
+
| 2.9133 | 34450 | 0.0001 | - |
|
927 |
+
| 2.9175 | 34500 | 0.0001 | - |
|
928 |
+
| 2.9218 | 34550 | 0.0 | - |
|
929 |
+
| 2.9260 | 34600 | 0.0001 | - |
|
930 |
+
| 2.9302 | 34650 | 0.0001 | - |
|
931 |
+
| 2.9345 | 34700 | 0.0001 | - |
|
932 |
+
| 2.9387 | 34750 | 0.0155 | - |
|
933 |
+
| 2.9429 | 34800 | 0.0001 | - |
|
934 |
+
| 2.9471 | 34850 | 0.0 | - |
|
935 |
+
| 2.9514 | 34900 | 0.0001 | - |
|
936 |
+
| 2.9556 | 34950 | 0.0001 | - |
|
937 |
+
| 2.9598 | 35000 | 0.0001 | - |
|
938 |
+
| 2.9641 | 35050 | 0.0 | - |
|
939 |
+
| 2.9683 | 35100 | 0.0018 | - |
|
940 |
+
| 2.9725 | 35150 | 0.0001 | - |
|
941 |
+
| 2.9767 | 35200 | 0.0001 | - |
|
942 |
+
| 2.9810 | 35250 | 0.0001 | - |
|
943 |
+
| 2.9852 | 35300 | 0.0001 | - |
|
944 |
+
| 2.9894 | 35350 | 0.0001 | - |
|
945 |
+
| 2.9937 | 35400 | 0.0001 | - |
|
946 |
+
| 2.9979 | 35450 | 0.0001 | - |
|
947 |
+
| 3.0 | 35475 | - | 0.0003 |
|
948 |
+
| 3.0021 | 35500 | 0.0001 | - |
|
949 |
+
| 3.0063 | 35550 | 0.0001 | - |
|
950 |
+
| 3.0106 | 35600 | 0.0022 | - |
|
951 |
+
| 3.0148 | 35650 | 0.0001 | - |
|
952 |
+
| 3.0190 | 35700 | 0.0001 | - |
|
953 |
+
| 3.0233 | 35750 | 0.0001 | - |
|
954 |
+
| 3.0275 | 35800 | 0.0 | - |
|
955 |
+
| 3.0317 | 35850 | 0.0019 | - |
|
956 |
+
| 3.0359 | 35900 | 0.0 | - |
|
957 |
+
| 3.0402 | 35950 | 0.0001 | - |
|
958 |
+
| 3.0444 | 36000 | 0.0001 | - |
|
959 |
+
| 3.0486 | 36050 | 0.0001 | - |
|
960 |
+
| 3.0529 | 36100 | 0.0 | - |
|
961 |
+
| 3.0571 | 36150 | 0.0 | - |
|
962 |
+
| 3.0613 | 36200 | 0.0001 | - |
|
963 |
+
| 3.0655 | 36250 | 0.0001 | - |
|
964 |
+
| 3.0698 | 36300 | 0.0001 | - |
|
965 |
+
| 3.0740 | 36350 | 0.0001 | - |
|
966 |
+
| 3.0782 | 36400 | 0.0001 | - |
|
967 |
+
| 3.0825 | 36450 | 0.0 | - |
|
968 |
+
| 3.0867 | 36500 | 0.0001 | - |
|
969 |
+
| 3.0909 | 36550 | 0.0001 | - |
|
970 |
+
| 3.0951 | 36600 | 0.0001 | - |
|
971 |
+
| 3.0994 | 36650 | 0.0001 | - |
|
972 |
+
| 3.1036 | 36700 | 0.0001 | - |
|
973 |
+
| 3.1078 | 36750 | 0.0 | - |
|
974 |
+
| 3.1121 | 36800 | 0.0001 | - |
|
975 |
+
| 3.1163 | 36850 | 0.0001 | - |
|
976 |
+
| 3.1205 | 36900 | 0.0 | - |
|
977 |
+
| 3.1247 | 36950 | 0.0001 | - |
|
978 |
+
| 3.1290 | 37000 | 0.0001 | - |
|
979 |
+
| 3.1332 | 37050 | 0.0001 | - |
|
980 |
+
| 3.1374 | 37100 | 0.0001 | - |
|
981 |
+
| 3.1416 | 37150 | 0.0001 | - |
|
982 |
+
| 3.1459 | 37200 | 0.0001 | - |
|
983 |
+
| 3.1501 | 37250 | 0.0001 | - |
|
984 |
+
| 3.1543 | 37300 | 0.0001 | - |
|
985 |
+
| 3.1586 | 37350 | 0.0001 | - |
|
986 |
+
| 3.1628 | 37400 | 0.0055 | - |
|
987 |
+
| 3.1670 | 37450 | 0.0 | - |
|
988 |
+
| 3.1712 | 37500 | 0.0001 | - |
|
989 |
+
| 3.1755 | 37550 | 0.0019 | - |
|
990 |
+
| 3.1797 | 37600 | 0.0001 | - |
|
991 |
+
| 3.1839 | 37650 | 0.0001 | - |
|
992 |
+
| 3.1882 | 37700 | 0.0 | - |
|
993 |
+
| 3.1924 | 37750 | 0.0 | - |
|
994 |
+
| 3.1966 | 37800 | 0.0001 | - |
|
995 |
+
| 3.2008 | 37850 | 0.0001 | - |
|
996 |
+
| 3.2051 | 37900 | 0.0 | - |
|
997 |
+
| 3.2093 | 37950 | 0.0001 | - |
|
998 |
+
| 3.2135 | 38000 | 0.0001 | - |
|
999 |
+
| 3.2178 | 38050 | 0.0001 | - |
|
1000 |
+
| 3.2220 | 38100 | 0.0 | - |
|
1001 |
+
| 3.2262 | 38150 | 0.0001 | - |
|
1002 |
+
| 3.2304 | 38200 | 0.0 | - |
|
1003 |
+
| 3.2347 | 38250 | 0.0001 | - |
|
1004 |
+
| 3.2389 | 38300 | 0.0001 | - |
|
1005 |
+
| 3.2431 | 38350 | 0.0 | - |
|
1006 |
+
| 3.2474 | 38400 | 0.0001 | - |
|
1007 |
+
| 3.2516 | 38450 | 0.0001 | - |
|
1008 |
+
| 3.2558 | 38500 | 0.0 | - |
|
1009 |
+
| 3.2600 | 38550 | 0.0 | - |
|
1010 |
+
| 3.2643 | 38600 | 0.0 | - |
|
1011 |
+
| 3.2685 | 38650 | 0.0017 | - |
|
1012 |
+
| 3.2727 | 38700 | 0.0095 | - |
|
1013 |
+
| 3.2770 | 38750 | 0.0001 | - |
|
1014 |
+
| 3.2812 | 38800 | 0.0001 | - |
|
1015 |
+
| 3.2854 | 38850 | 0.0 | - |
|
1016 |
+
| 3.2896 | 38900 | 0.0001 | - |
|
1017 |
+
| 3.2939 | 38950 | 0.0 | - |
|
1018 |
+
| 3.2981 | 39000 | 0.0001 | - |
|
1019 |
+
| 3.3023 | 39050 | 0.0 | - |
|
1020 |
+
| 3.3066 | 39100 | 0.0001 | - |
|
1021 |
+
| 3.3108 | 39150 | 0.0 | - |
|
1022 |
+
| 3.3150 | 39200 | 0.0 | - |
|
1023 |
+
| 3.3192 | 39250 | 0.0001 | - |
|
1024 |
+
| 3.3235 | 39300 | 0.0001 | - |
|
1025 |
+
| 3.3277 | 39350 | 0.0 | - |
|
1026 |
+
| 3.3319 | 39400 | 0.0001 | - |
|
1027 |
+
| 3.3362 | 39450 | 0.0001 | - |
|
1028 |
+
| 3.3404 | 39500 | 0.0001 | - |
|
1029 |
+
| 3.3446 | 39550 | 0.0 | - |
|
1030 |
+
| 3.3488 | 39600 | 0.0001 | - |
|
1031 |
+
| 3.3531 | 39650 | 0.0 | - |
|
1032 |
+
| 3.3573 | 39700 | 0.0001 | - |
|
1033 |
+
| 3.3615 | 39750 | 0.0001 | - |
|
1034 |
+
| 3.3658 | 39800 | 0.0022 | - |
|
1035 |
+
| 3.3700 | 39850 | 0.0001 | - |
|
1036 |
+
| 3.3742 | 39900 | 0.0001 | - |
|
1037 |
+
| 3.3784 | 39950 | 0.0 | - |
|
1038 |
+
| 3.3827 | 40000 | 0.0 | - |
|
1039 |
+
| 3.3869 | 40050 | 0.0 | - |
|
1040 |
+
| 3.3911 | 40100 | 0.0001 | - |
|
1041 |
+
| 3.3953 | 40150 | 0.0 | - |
|
1042 |
+
| 3.3996 | 40200 | 0.0 | - |
|
1043 |
+
| 3.4038 | 40250 | 0.0 | - |
|
1044 |
+
| 3.4080 | 40300 | 0.0001 | - |
|
1045 |
+
| 3.4123 | 40350 | 0.0 | - |
|
1046 |
+
| 3.4165 | 40400 | 0.0001 | - |
|
1047 |
+
| 3.4207 | 40450 | 0.0 | - |
|
1048 |
+
| 3.4249 | 40500 | 0.0001 | - |
|
1049 |
+
| 3.4292 | 40550 | 0.0001 | - |
|
1050 |
+
| 3.4334 | 40600 | 0.0001 | - |
|
1051 |
+
| 3.4376 | 40650 | 0.0 | - |
|
1052 |
+
| 3.4419 | 40700 | 0.0001 | - |
|
1053 |
+
| 3.4461 | 40750 | 0.0 | - |
|
1054 |
+
| 3.4503 | 40800 | 0.0 | - |
|
1055 |
+
| 3.4545 | 40850 | 0.0 | - |
|
1056 |
+
| 3.4588 | 40900 | 0.0 | - |
|
1057 |
+
| 3.4630 | 40950 | 0.0001 | - |
|
1058 |
+
| 3.4672 | 41000 | 0.0 | - |
|
1059 |
+
| 3.4715 | 41050 | 0.0 | - |
|
1060 |
+
| 3.4757 | 41100 | 0.0001 | - |
|
1061 |
+
| 3.4799 | 41150 | 0.0016 | - |
|
1062 |
+
| 3.4841 | 41200 | 0.0 | - |
|
1063 |
+
| 3.4884 | 41250 | 0.0001 | - |
|
1064 |
+
| 3.4926 | 41300 | 0.0 | - |
|
1065 |
+
| 3.4968 | 41350 | 0.0001 | - |
|
1066 |
+
| 3.5011 | 41400 | 0.0 | - |
|
1067 |
+
| 3.5053 | 41450 | 0.0 | - |
|
1068 |
+
| 3.5095 | 41500 | 0.0001 | - |
|
1069 |
+
| 3.5137 | 41550 | 0.0 | - |
|
1070 |
+
| 3.5180 | 41600 | 0.0 | - |
|
1071 |
+
| 3.5222 | 41650 | 0.0019 | - |
|
1072 |
+
| 3.5264 | 41700 | 0.0001 | - |
|
1073 |
+
| 3.5307 | 41750 | 0.0001 | - |
|
1074 |
+
| 3.5349 | 41800 | 0.0001 | - |
|
1075 |
+
| 3.5391 | 41850 | 0.0001 | - |
|
1076 |
+
| 3.5433 | 41900 | 0.0023 | - |
|
1077 |
+
| 3.5476 | 41950 | 0.0001 | - |
|
1078 |
+
| 3.5518 | 42000 | 0.0 | - |
|
1079 |
+
| 3.5560 | 42050 | 0.0001 | - |
|
1080 |
+
| 3.5603 | 42100 | 0.0001 | - |
|
1081 |
+
| 3.5645 | 42150 | 0.0 | - |
|
1082 |
+
| 3.5687 | 42200 | 0.0 | - |
|
1083 |
+
| 3.5729 | 42250 | 0.0 | - |
|
1084 |
+
| 3.5772 | 42300 | 0.0 | - |
|
1085 |
+
| 3.5814 | 42350 | 0.0001 | - |
|
1086 |
+
| 3.5856 | 42400 | 0.0 | - |
|
1087 |
+
| 3.5899 | 42450 | 0.0 | - |
|
1088 |
+
| 3.5941 | 42500 | 0.0 | - |
|
1089 |
+
| 3.5983 | 42550 | 0.0 | - |
|
1090 |
+
| 3.6025 | 42600 | 0.0001 | - |
|
1091 |
+
| 3.6068 | 42650 | 0.0 | - |
|
1092 |
+
| 3.6110 | 42700 | 0.0001 | - |
|
1093 |
+
| 3.6152 | 42750 | 0.0001 | - |
|
1094 |
+
| 3.6195 | 42800 | 0.0001 | - |
|
1095 |
+
| 3.6237 | 42850 | 0.0001 | - |
|
1096 |
+
| 3.6279 | 42900 | 0.0001 | - |
|
1097 |
+
| 3.6321 | 42950 | 0.0 | - |
|
1098 |
+
| 3.6364 | 43000 | 0.0 | - |
|
1099 |
+
| 3.6406 | 43050 | 0.0 | - |
|
1100 |
+
| 3.6448 | 43100 | 0.0001 | - |
|
1101 |
+
| 3.6490 | 43150 | 0.0 | - |
|
1102 |
+
| 3.6533 | 43200 | 0.0001 | - |
|
1103 |
+
| 3.6575 | 43250 | 0.0001 | - |
|
1104 |
+
| 3.6617 | 43300 | 0.0001 | - |
|
1105 |
+
| 3.6660 | 43350 | 0.0001 | - |
|
1106 |
+
| 3.6702 | 43400 | 0.0 | - |
|
1107 |
+
| 3.6744 | 43450 | 0.0024 | - |
|
1108 |
+
| 3.6786 | 43500 | 0.0 | - |
|
1109 |
+
| 3.6829 | 43550 | 0.0001 | - |
|
1110 |
+
| 3.6871 | 43600 | 0.002 | - |
|
1111 |
+
| 3.6913 | 43650 | 0.0 | - |
|
1112 |
+
| 3.6956 | 43700 | 0.0 | - |
|
1113 |
+
| 3.6998 | 43750 | 0.0001 | - |
|
1114 |
+
| 3.7040 | 43800 | 0.0001 | - |
|
1115 |
+
| 3.7082 | 43850 | 0.0 | - |
|
1116 |
+
| 3.7125 | 43900 | 0.0 | - |
|
1117 |
+
| 3.7167 | 43950 | 0.0001 | - |
|
1118 |
+
| 3.7209 | 44000 | 0.0 | - |
|
1119 |
+
| 3.7252 | 44050 | 0.0001 | - |
|
1120 |
+
| 3.7294 | 44100 | 0.0 | - |
|
1121 |
+
| 3.7336 | 44150 | 0.0 | - |
|
1122 |
+
| 3.7378 | 44200 | 0.0001 | - |
|
1123 |
+
| 3.7421 | 44250 | 0.0 | - |
|
1124 |
+
| 3.7463 | 44300 | 0.0 | - |
|
1125 |
+
| 3.7505 | 44350 | 0.0001 | - |
|
1126 |
+
| 3.7548 | 44400 | 0.0 | - |
|
1127 |
+
| 3.7590 | 44450 | 0.0 | - |
|
1128 |
+
| 3.7632 | 44500 | 0.0001 | - |
|
1129 |
+
| 3.7674 | 44550 | 0.0 | - |
|
1130 |
+
| 3.7717 | 44600 | 0.0 | - |
|
1131 |
+
| 3.7759 | 44650 | 0.0 | - |
|
1132 |
+
| 3.7801 | 44700 | 0.0022 | - |
|
1133 |
+
| 3.7844 | 44750 | 0.0 | - |
|
1134 |
+
| 3.7886 | 44800 | 0.0001 | - |
|
1135 |
+
| 3.7928 | 44850 | 0.0 | - |
|
1136 |
+
| 3.7970 | 44900 | 0.0001 | - |
|
1137 |
+
| 3.8013 | 44950 | 0.0001 | - |
|
1138 |
+
| 3.8055 | 45000 | 0.0 | - |
|
1139 |
+
| 3.8097 | 45050 | 0.0 | - |
|
1140 |
+
| 3.8140 | 45100 | 0.0 | - |
|
1141 |
+
| 3.8182 | 45150 | 0.0 | - |
|
1142 |
+
| 3.8224 | 45200 | 0.0 | - |
|
1143 |
+
| 3.8266 | 45250 | 0.0 | - |
|
1144 |
+
| 3.8309 | 45300 | 0.0001 | - |
|
1145 |
+
| 3.8351 | 45350 | 0.0 | - |
|
1146 |
+
| 3.8393 | 45400 | 0.0001 | - |
|
1147 |
+
| 3.8436 | 45450 | 0.0001 | - |
|
1148 |
+
| 3.8478 | 45500 | 0.0 | - |
|
1149 |
+
| 3.8520 | 45550 | 0.0001 | - |
|
1150 |
+
| 3.8562 | 45600 | 0.0001 | - |
|
1151 |
+
| 3.8605 | 45650 | 0.0 | - |
|
1152 |
+
| 3.8647 | 45700 | 0.0 | - |
|
1153 |
+
| 3.8689 | 45750 | 0.0 | - |
|
1154 |
+
| 3.8732 | 45800 | 0.0001 | - |
|
1155 |
+
| 3.8774 | 45850 | 0.0015 | - |
|
1156 |
+
| 3.8816 | 45900 | 0.0001 | - |
|
1157 |
+
| 3.8858 | 45950 | 0.0 | - |
|
1158 |
+
| 3.8901 | 46000 | 0.0 | - |
|
1159 |
+
| 3.8943 | 46050 | 0.0001 | - |
|
1160 |
+
| 3.8985 | 46100 | 0.0 | - |
|
1161 |
+
| 3.9027 | 46150 | 0.0 | - |
|
1162 |
+
| 3.9070 | 46200 | 0.0 | - |
|
1163 |
+
| 3.9112 | 46250 | 0.0 | - |
|
1164 |
+
| 3.9154 | 46300 | 0.0 | - |
|
1165 |
+
| 3.9197 | 46350 | 0.0 | - |
|
1166 |
+
| 3.9239 | 46400 | 0.0 | - |
|
1167 |
+
| 3.9281 | 46450 | 0.0 | - |
|
1168 |
+
| 3.9323 | 46500 | 0.0 | - |
|
1169 |
+
| 3.9366 | 46550 | 0.0001 | - |
|
1170 |
+
| 3.9408 | 46600 | 0.0001 | - |
|
1171 |
+
| 3.9450 | 46650 | 0.0001 | - |
|
1172 |
+
| 3.9493 | 46700 | 0.0001 | - |
|
1173 |
+
| 3.9535 | 46750 | 0.0 | - |
|
1174 |
+
| 3.9577 | 46800 | 0.0 | - |
|
1175 |
+
| 3.9619 | 46850 | 0.0 | - |
|
1176 |
+
| 3.9662 | 46900 | 0.0 | - |
|
1177 |
+
| 3.9704 | 46950 | 0.0 | - |
|
1178 |
+
| 3.9746 | 47000 | 0.0 | - |
|
1179 |
+
| 3.9789 | 47050 | 0.0 | - |
|
1180 |
+
| 3.9831 | 47100 | 0.0001 | - |
|
1181 |
+
| 3.9873 | 47150 | 0.0001 | - |
|
1182 |
+
| 3.9915 | 47200 | 0.0021 | - |
|
1183 |
+
| 3.9958 | 47250 | 0.0 | - |
|
1184 |
+
| **4.0** | **47300** | **0.0** | **0.0002** |
|
1185 |
+
|
1186 |
+
* The bold row denotes the saved checkpoint.
|
1187 |
+
### Framework Versions
|
1188 |
+
- Python: 3.10.14
|
1189 |
+
- SetFit: 1.0.3
|
1190 |
+
- Sentence Transformers: 3.0.1
|
1191 |
+
- Transformers: 4.39.0
|
1192 |
+
- PyTorch: 2.4.0+cu121
|
1193 |
+
- Datasets: 2.20.0
|
1194 |
+
- Tokenizers: 0.15.2
|
1195 |
+
|
1196 |
+
## Citation
|
1197 |
+
|
1198 |
+
### BibTeX
|
1199 |
+
```bibtex
|
1200 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
1201 |
+
doi = {10.48550/ARXIV.2209.11055},
|
1202 |
+
url = {https://arxiv.org/abs/2209.11055},
|
1203 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
1204 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
1205 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
1206 |
+
publisher = {arXiv},
|
1207 |
+
year = {2022},
|
1208 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
1209 |
+
}
|
1210 |
+
```
|
1211 |
+
|
1212 |
+
<!--
|
1213 |
+
## Glossary
|
1214 |
+
|
1215 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1216 |
+
-->
|
1217 |
+
|
1218 |
+
<!--
|
1219 |
+
## Model Card Authors
|
1220 |
+
|
1221 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1222 |
+
-->
|
1223 |
+
|
1224 |
+
<!--
|
1225 |
+
## Model Card Contact
|
1226 |
+
|
1227 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1228 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_47300",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.39.0",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.39.0",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"analyze",
|
4 |
+
"analyze advantages",
|
5 |
+
"analyze best practices",
|
6 |
+
"analyze business proposal",
|
7 |
+
"analyze data",
|
8 |
+
"analyze data backup and recovery",
|
9 |
+
"analyze data visualization",
|
10 |
+
"analyze feedback",
|
11 |
+
"analyze information",
|
12 |
+
"analyze information technology security policy",
|
13 |
+
"analyze job descriptions",
|
14 |
+
"analyze marketing campaign",
|
15 |
+
"analyze packaging design",
|
16 |
+
"analyze process",
|
17 |
+
"analyze product description",
|
18 |
+
"analyze product rebranding",
|
19 |
+
"analyze product recall",
|
20 |
+
"analyze social media campaign",
|
21 |
+
"analyze time management",
|
22 |
+
"analyze trends",
|
23 |
+
"analyze website concept",
|
24 |
+
"bake",
|
25 |
+
"define",
|
26 |
+
"explain",
|
27 |
+
"explain the importance of user experience design",
|
28 |
+
"generate business proposal",
|
29 |
+
"generate crisis communication plan",
|
30 |
+
"generate ideas",
|
31 |
+
"generate learning plan",
|
32 |
+
"generate product description",
|
33 |
+
"generate product roadmap",
|
34 |
+
"generate project proposal",
|
35 |
+
"generate recommendations",
|
36 |
+
"generate resume",
|
37 |
+
"generate social media campaign",
|
38 |
+
"generate template",
|
39 |
+
"generate training program outline",
|
40 |
+
"learn a language",
|
41 |
+
"manage time",
|
42 |
+
"outline steps",
|
43 |
+
"provide general information",
|
44 |
+
"recommend",
|
45 |
+
"summarize advantages",
|
46 |
+
"summarize financial report"
|
47 |
+
],
|
48 |
+
"normalize_embeddings": false
|
49 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa9af53d2b727fdc89079ec591802688316998dd14ac62bedbe738789cee87d6
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a93878927846087328bf11ce325ba4e24677804e2edcf898dc4bdcbb9aea7545
|
3 |
+
size 271879
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30526": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": true,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "<pad>",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "</s>",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "MPNetTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|