nmlemus commited on
Commit
dc068a1
1 Parent(s): d502724

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Why should companies invest in UX design?
14
+ - text: Evaluate the efficiency of the current workflow.
15
+ - text: I need a resume for a finance analyst.
16
+ - text: Generate ideas for improving employee satisfaction.
17
+ - text: Generate a campaign for increasing our Instagram followers.
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.9977272727272727
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 44 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:-------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | analyze | <ul><li>'Analyze the results from the A/B testing.'</li><li>'Evaluate the effectiveness of the new strategy.'</li><li>'What are the key insights from the customer survey?'</li></ul> |
66
+ | analyze advantages | <ul><li>'Analyze the advantages of social media marketing for startups.'</li><li>'Analyze the advantages of electric vehicles over gas-powered cars.'</li><li>'What are the benefits of a plant-based diet for health?'</li></ul> |
67
+ | analyze best practices | <ul><li>'What are the industry standards for data security?'</li><li>'Evaluate best practices for customer service.'</li><li>'Analyze best practices for social media marketing.'</li></ul> |
68
+ | analyze business proposal | <ul><li>'Analyze the competitive analysis in the business plan.'</li><li>'Evaluate the team structure mentioned in the proposal.'</li><li>'What are the key points in the executive summary?'</li></ul> |
69
+ | analyze data | <ul><li>'What does the data tell us about user engagement?'</li><li>'Analyze the sales data for the last quarter.'</li><li>'Analyze the data to determine customer preferences.'</li></ul> |
70
+ | analyze data backup and recovery | <ul><li>'Evaluate the effectiveness of the backup strategy.'</li><li>'Analyze the current data backup procedures.'</li><li>'What are the risks associated with our data recovery plan?'</li></ul> |
71
+ | analyze data visualization | <ul><li>'What does this bar chart tell us about customer demographics?'</li><li>'Interpret the data in this line chart.'</li><li>'Analyze the distribution shown in this histogram.'</li></ul> |
72
+ | analyze feedback | <ul><li>'Analyze customer feedback from the recent survey.'</li><li>'Analyze the feedback received from the beta testers.'</li><li>'Evaluate the feedback from the focus group.'</li></ul> |
73
+ | analyze information | <ul><li>'What are the main points from the research findings?'</li><li>'Evaluate the information from the competitor analysis.'</li><li>'What conclusions can be drawn from the survey results?'</li></ul> |
74
+ | analyze information technology security policy | <ul><li>'Evaluate the risks mentioned in the security policy.'</li><li>"Analyze the company's IT security policy."</li><li>'What are the strengths of our IT security measures?'</li></ul> |
75
+ | analyze job descriptions | <ul><li>'Analyze the job description for the new position.'</li><li>'What are the key responsibilities listed in the job description?'</li><li>'Evaluate the job description for inclusivity.'</li></ul> |
76
+ | analyze marketing campaign | <ul><li>'Evaluate the customer conversion rates from the Google Ads campaign.'</li><li>'What were the engagement rates for the spring sale campaign?'</li><li>'Assess the performance of the influencer marketing strategy.'</li></ul> |
77
+ | analyze packaging design | <ul><li>'What are the strengths and weaknesses of the packaging?'</li><li>'Evaluate the impact of packaging on brand perception.'</li><li>'Analyze the cost-effectiveness of the packaging design.'</li></ul> |
78
+ | analyze process | <ul><li>'What are the key steps in our product development process?'</li><li>'Evaluate the process for software deployment.'</li><li>'Analyze the process for onboarding new employees.'</li></ul> |
79
+ | analyze product description | <ul><li>'What are the strengths of this product description?'</li><li>'Evaluate the clarity of the product description.'</li><li>'Analyze the persuasiveness of the product features.'</li></ul> |
80
+ | analyze product rebranding | <ul><li>'What were the challenges faced during rebranding?'</li><li>'What are the key changes in the new branding?'</li><li>'Evaluate the customer response to the rebranding effort.'</li></ul> |
81
+ | analyze product recall | <ul><li>'Analyze the customer feedback after the recall.'</li><li>'What were the financial implications of the recall?'</li><li>'Evaluate the effectiveness of the recall process.'</li></ul> |
82
+ | analyze social media campaign | <ul><li>'Evaluate the reach and impressions of the LinkedIn posts.'</li><li>'Analyze the effectiveness of the Twitter campaign.'</li><li>'What improvements can be made to our social media campaigns?'</li></ul> |
83
+ | analyze time management | <ul><li>'Analyze how I can better prioritize my tasks.'</li><li>'Analyze my current time management techniques.'</li><li>'What are the weaknesses in my time management?'</li></ul> |
84
+ | analyze trends | <ul><li>'Analyze the social media trends influencing businesses.'</li><li>'What are the current trends in digital marketing?'</li><li>'Analyze the latest trends in the tech industry.'</li></ul> |
85
+ | analyze website concept | <ul><li>'Analyze the content strategy of the new website.'</li><li>'What are the key elements of a successful website concept?'</li><li>'Analyze the mobile responsiveness of the website design.'</li></ul> |
86
+ | bake | <ul><li>'Bake a loaf of banana bread.'</li><li>'How do I bake a cheesecake?'</li><li>'Bake a batch of brownies.'</li></ul> |
87
+ | define | <ul><li>"Define the term 'machine learning'."</li><li>"What does 'SEO' stand for?"</li><li>"Define 'data analytics'."</li></ul> |
88
+ | explain | <ul><li>"Explain the importance of cybersecurity in today's world."</li><li>'Explain how machine learning works.'</li><li>'Can you clarify what SEO involves?'</li></ul> |
89
+ | explain the importance of user experience design | <ul><li>'Explain how UX design improves accessibility.'</li><li>'Why is user experience design important for websites?'</li><li>'Why should companies invest in UX design?'</li></ul> |
90
+ | generate business proposal | <ul><li>'What is the format for a business proposal?'</li><li>'Generate a business proposal for a new product line.'</li><li>'Create a proposal for a partnership with another company.'</li></ul> |
91
+ | generate crisis communication plan | <ul><li>'Create a communication plan for a financial crisis.'</li><li>'Create a plan for communicating with stakeholders in a crisis.'</li><li>'Generate a plan for internal communication during a crisis.'</li></ul> |
92
+ | generate ideas | <ul><li>'Generate ideas for improving employee satisfaction.'</li><li>'Come up with ideas for our company’s anniversary event.'</li><li>'What are some unique selling points for our service?'</li></ul> |
93
+ | generate learning plan | <ul><li>'Create a learning plan for understanding machine learning concepts.'</li><li>'Create a plan for learning digital marketing skills.'</li><li>'What should be included in a learning plan for data science?'</li></ul> |
94
+ | generate product description | <ul><li>'Generate a product description for the new smartphone.'</li><li>'Create a detailed description of the latest software.'</li><li>'What should be included in a product description?'</li></ul> |
95
+ | generate product roadmap | <ul><li>'Create a roadmap for the new software development.'</li><li>'What should be included in a product roadmap?'</li><li>'Generate a product roadmap for customer feedback integration.'</li></ul> |
96
+ | generate project proposal | <ul><li>'What are the key elements of a project proposal?'</li><li>'What should be included in a project proposal?'</li><li>'Generate a proposal for a research project.'</li></ul> |
97
+ | generate recommendations | <ul><li>'Provide recommendations for streamlining operations.'</li><li>'Generate recommendations for improving customer service.'</li><li>'What are your recommendations for the new marketing strategy?'</li></ul> |
98
+ | generate resume | <ul><li>'I need a resume for a teaching position.'</li><li>'Generate a resume for a software engineer.'</li><li>'Generate a resume for a data scientist.'</li></ul> |
99
+ | generate social media campaign | <ul><li>"Create a campaign to highlight our company's sustainability efforts."</li><li>'Generate a campaign for increasing our Instagram followers.'</li><li>'I need a campaign plan for promoting our summer sale.'</li></ul> |
100
+ | generate template | <ul><li>'Can you make a template for job descriptions?'</li><li>'Create a template for a project proposal.'</li><li>'Generate a meeting agenda template.'</li></ul> |
101
+ | generate training program outline | <ul><li>'Generate a training program outline for new employees.'</li><li>'Generate an outline for diversity and inclusion training.'</li><li>'Create an outline for a leadership training program.'</li></ul> |
102
+ | learn a language | <ul><li>'How do I become fluent in Portuguese?'</li><li>'How can I practice English pronunciation?'</li><li>'What is the best way to learn Chinese characters?'</li></ul> |
103
+ | manage time | <ul><li>'How do I balance work and personal life?'</li><li>'Tips for managing time during exams.'</li><li>'How do I create a daily schedule?'</li></ul> |
104
+ | outline steps | <ul><li>'What are the steps to develop a training program?'</li><li>'Outline the steps to launch a new product.'</li><li>'Outline the steps to implement a new software system.'</li></ul> |
105
+ | provide general information | <ul><li>'Can you give me an overview of the new software?'</li><li>"Give me general information about the industry's trends."</li><li>'What are the key points about the product launch?'</li></ul> |
106
+ | recommend | <ul><li>'What are the top destinations for a vacation?'</li><li>'What podcasts would you suggest for entrepreneurs?'</li><li>'Recommend a good book on data science.'</li></ul> |
107
+ | summarize advantages | <ul><li>'Summarize the advantages of using renewable energy.'</li><li>'Summarize the advantages of social media marketing.'</li><li>'What are the benefits of using project management software?'</li></ul> |
108
+ | summarize financial report | <ul><li>'Summarize the main findings of the quarterly financial report.'</li><li>'Provide a summary of the financial projections.'</li><li>'What are the key metrics in the financial summary?'</li></ul> |
109
+
110
+ ## Evaluation
111
+
112
+ ### Metrics
113
+ | Label | Accuracy |
114
+ |:--------|:---------|
115
+ | **all** | 0.9977 |
116
+
117
+ ## Uses
118
+
119
+ ### Direct Use for Inference
120
+
121
+ First install the SetFit library:
122
+
123
+ ```bash
124
+ pip install setfit
125
+ ```
126
+
127
+ Then you can load this model and run inference.
128
+
129
+ ```python
130
+ from setfit import SetFitModel
131
+
132
+ # Download from the 🤗 Hub
133
+ model = SetFitModel.from_pretrained("nmlemus/setfit-paraphrase-mpnet-base-v2-surepath-chatgtp-dataset")
134
+ # Run inference
135
+ preds = model("I need a resume for a finance analyst.")
136
+ ```
137
+
138
+ <!--
139
+ ### Downstream Use
140
+
141
+ *List how someone could finetune this model on their own dataset.*
142
+ -->
143
+
144
+ <!--
145
+ ### Out-of-Scope Use
146
+
147
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
148
+ -->
149
+
150
+ <!--
151
+ ## Bias, Risks and Limitations
152
+
153
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
154
+ -->
155
+
156
+ <!--
157
+ ### Recommendations
158
+
159
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
160
+ -->
161
+
162
+ ## Training Details
163
+
164
+ ### Training Set Metrics
165
+ | Training set | Min | Median | Max |
166
+ |:-------------|:----|:-------|:----|
167
+ | Word count | 3 | 7.8795 | 13 |
168
+
169
+ | Label | Training Sample Count |
170
+ |:-------------------------------------------------|:----------------------|
171
+ | analyze | 10 |
172
+ | analyze advantages | 10 |
173
+ | analyze best practices | 10 |
174
+ | analyze business proposal | 10 |
175
+ | analyze data | 10 |
176
+ | analyze data backup and recovery | 10 |
177
+ | analyze data visualization | 10 |
178
+ | analyze feedback | 10 |
179
+ | analyze information | 10 |
180
+ | analyze information technology security policy | 10 |
181
+ | analyze job descriptions | 10 |
182
+ | analyze marketing campaign | 10 |
183
+ | analyze packaging design | 10 |
184
+ | analyze process | 10 |
185
+ | analyze product description | 10 |
186
+ | analyze product rebranding | 10 |
187
+ | analyze product recall | 10 |
188
+ | analyze social media campaign | 10 |
189
+ | analyze time management | 10 |
190
+ | analyze trends | 10 |
191
+ | analyze website concept | 10 |
192
+ | bake | 10 |
193
+ | define | 10 |
194
+ | explain | 10 |
195
+ | explain the importance of user experience design | 10 |
196
+ | generate business proposal | 10 |
197
+ | generate crisis communication plan | 10 |
198
+ | generate ideas | 10 |
199
+ | generate learning plan | 10 |
200
+ | generate product description | 10 |
201
+ | generate product roadmap | 10 |
202
+ | generate project proposal | 10 |
203
+ | generate recommendations | 10 |
204
+ | generate resume | 10 |
205
+ | generate social media campaign | 10 |
206
+ | generate template | 10 |
207
+ | generate training program outline | 10 |
208
+ | learn a language | 10 |
209
+ | manage time | 10 |
210
+ | outline steps | 10 |
211
+ | provide general information | 10 |
212
+ | recommend | 10 |
213
+ | summarize advantages | 10 |
214
+ | summarize financial report | 10 |
215
+
216
+ ### Training Hyperparameters
217
+ - batch_size: (16, 16)
218
+ - num_epochs: (4, 4)
219
+ - max_steps: -1
220
+ - sampling_strategy: oversampling
221
+ - body_learning_rate: (2e-05, 1e-05)
222
+ - head_learning_rate: 0.01
223
+ - loss: CosineSimilarityLoss
224
+ - distance_metric: cosine_distance
225
+ - margin: 0.25
226
+ - end_to_end: False
227
+ - use_amp: False
228
+ - warmup_proportion: 0.1
229
+ - seed: 42
230
+ - eval_max_steps: -1
231
+ - load_best_model_at_end: True
232
+
233
+ ### Training Results
234
+ | Epoch | Step | Training Loss | Validation Loss |
235
+ |:-------:|:---------:|:-------------:|:---------------:|
236
+ | 0.0001 | 1 | 0.1037 | - |
237
+ | 0.0042 | 50 | 0.1544 | - |
238
+ | 0.0085 | 100 | 0.1555 | - |
239
+ | 0.0127 | 150 | 0.0948 | - |
240
+ | 0.0169 | 200 | 0.1176 | - |
241
+ | 0.0211 | 250 | 0.1108 | - |
242
+ | 0.0254 | 300 | 0.1169 | - |
243
+ | 0.0296 | 350 | 0.1291 | - |
244
+ | 0.0338 | 400 | 0.1068 | - |
245
+ | 0.0381 | 450 | 0.1369 | - |
246
+ | 0.0423 | 500 | 0.0823 | - |
247
+ | 0.0465 | 550 | 0.0732 | - |
248
+ | 0.0507 | 600 | 0.1006 | - |
249
+ | 0.0550 | 650 | 0.0638 | - |
250
+ | 0.0592 | 700 | 0.0818 | - |
251
+ | 0.0634 | 750 | 0.0542 | - |
252
+ | 0.0677 | 800 | 0.039 | - |
253
+ | 0.0719 | 850 | 0.0497 | - |
254
+ | 0.0761 | 900 | 0.016 | - |
255
+ | 0.0803 | 950 | 0.021 | - |
256
+ | 0.0846 | 1000 | 0.0136 | - |
257
+ | 0.0888 | 1050 | 0.0353 | - |
258
+ | 0.0930 | 1100 | 0.0164 | - |
259
+ | 0.0973 | 1150 | 0.0123 | - |
260
+ | 0.1015 | 1200 | 0.0218 | - |
261
+ | 0.1057 | 1250 | 0.0845 | - |
262
+ | 0.1099 | 1300 | 0.0082 | - |
263
+ | 0.1142 | 1350 | 0.0385 | - |
264
+ | 0.1184 | 1400 | 0.0087 | - |
265
+ | 0.1226 | 1450 | 0.0133 | - |
266
+ | 0.1268 | 1500 | 0.0045 | - |
267
+ | 0.1311 | 1550 | 0.0054 | - |
268
+ | 0.1353 | 1600 | 0.0078 | - |
269
+ | 0.1395 | 1650 | 0.0068 | - |
270
+ | 0.1438 | 1700 | 0.0586 | - |
271
+ | 0.1480 | 1750 | 0.0173 | - |
272
+ | 0.1522 | 1800 | 0.0585 | - |
273
+ | 0.1564 | 1850 | 0.0052 | - |
274
+ | 0.1607 | 1900 | 0.0046 | - |
275
+ | 0.1649 | 1950 | 0.0021 | - |
276
+ | 0.1691 | 2000 | 0.0092 | - |
277
+ | 0.1734 | 2050 | 0.0027 | - |
278
+ | 0.1776 | 2100 | 0.0041 | - |
279
+ | 0.1818 | 2150 | 0.0053 | - |
280
+ | 0.1860 | 2200 | 0.0585 | - |
281
+ | 0.1903 | 2250 | 0.0034 | - |
282
+ | 0.1945 | 2300 | 0.0601 | - |
283
+ | 0.1987 | 2350 | 0.0061 | - |
284
+ | 0.2030 | 2400 | 0.0022 | - |
285
+ | 0.2072 | 2450 | 0.0037 | - |
286
+ | 0.2114 | 2500 | 0.0019 | - |
287
+ | 0.2156 | 2550 | 0.0012 | - |
288
+ | 0.2199 | 2600 | 0.0031 | - |
289
+ | 0.2241 | 2650 | 0.0028 | - |
290
+ | 0.2283 | 2700 | 0.0011 | - |
291
+ | 0.2326 | 2750 | 0.0019 | - |
292
+ | 0.2368 | 2800 | 0.0638 | - |
293
+ | 0.2410 | 2850 | 0.0018 | - |
294
+ | 0.2452 | 2900 | 0.0017 | - |
295
+ | 0.2495 | 2950 | 0.0021 | - |
296
+ | 0.2537 | 3000 | 0.0016 | - |
297
+ | 0.2579 | 3050 | 0.0013 | - |
298
+ | 0.2622 | 3100 | 0.0017 | - |
299
+ | 0.2664 | 3150 | 0.0101 | - |
300
+ | 0.2706 | 3200 | 0.0029 | - |
301
+ | 0.2748 | 3250 | 0.0013 | - |
302
+ | 0.2791 | 3300 | 0.002 | - |
303
+ | 0.2833 | 3350 | 0.0079 | - |
304
+ | 0.2875 | 3400 | 0.0013 | - |
305
+ | 0.2918 | 3450 | 0.001 | - |
306
+ | 0.2960 | 3500 | 0.0015 | - |
307
+ | 0.3002 | 3550 | 0.0013 | - |
308
+ | 0.3044 | 3600 | 0.0017 | - |
309
+ | 0.3087 | 3650 | 0.0012 | - |
310
+ | 0.3129 | 3700 | 0.0007 | - |
311
+ | 0.3171 | 3750 | 0.0019 | - |
312
+ | 0.3214 | 3800 | 0.0008 | - |
313
+ | 0.3256 | 3850 | 0.0008 | - |
314
+ | 0.3298 | 3900 | 0.0007 | - |
315
+ | 0.3340 | 3950 | 0.0007 | - |
316
+ | 0.3383 | 4000 | 0.001 | - |
317
+ | 0.3425 | 4050 | 0.0005 | - |
318
+ | 0.3467 | 4100 | 0.0008 | - |
319
+ | 0.3510 | 4150 | 0.0007 | - |
320
+ | 0.3552 | 4200 | 0.0014 | - |
321
+ | 0.3594 | 4250 | 0.0005 | - |
322
+ | 0.3636 | 4300 | 0.0008 | - |
323
+ | 0.3679 | 4350 | 0.0006 | - |
324
+ | 0.3721 | 4400 | 0.0011 | - |
325
+ | 0.3763 | 4450 | 0.0006 | - |
326
+ | 0.3805 | 4500 | 0.0007 | - |
327
+ | 0.3848 | 4550 | 0.0006 | - |
328
+ | 0.3890 | 4600 | 0.0003 | - |
329
+ | 0.3932 | 4650 | 0.0022 | - |
330
+ | 0.3975 | 4700 | 0.0007 | - |
331
+ | 0.4017 | 4750 | 0.0031 | - |
332
+ | 0.4059 | 4800 | 0.0013 | - |
333
+ | 0.4101 | 4850 | 0.0015 | - |
334
+ | 0.4144 | 4900 | 0.0017 | - |
335
+ | 0.4186 | 4950 | 0.0007 | - |
336
+ | 0.4228 | 5000 | 0.0006 | - |
337
+ | 0.4271 | 5050 | 0.0006 | - |
338
+ | 0.4313 | 5100 | 0.0013 | - |
339
+ | 0.4355 | 5150 | 0.0003 | - |
340
+ | 0.4397 | 5200 | 0.12 | - |
341
+ | 0.4440 | 5250 | 0.0005 | - |
342
+ | 0.4482 | 5300 | 0.0006 | - |
343
+ | 0.4524 | 5350 | 0.0016 | - |
344
+ | 0.4567 | 5400 | 0.0008 | - |
345
+ | 0.4609 | 5450 | 0.0118 | - |
346
+ | 0.4651 | 5500 | 0.0003 | - |
347
+ | 0.4693 | 5550 | 0.0542 | - |
348
+ | 0.4736 | 5600 | 0.0011 | - |
349
+ | 0.4778 | 5650 | 0.0004 | - |
350
+ | 0.4820 | 5700 | 0.001 | - |
351
+ | 0.4863 | 5750 | 0.0008 | - |
352
+ | 0.4905 | 5800 | 0.0008 | - |
353
+ | 0.4947 | 5850 | 0.0004 | - |
354
+ | 0.4989 | 5900 | 0.0008 | - |
355
+ | 0.5032 | 5950 | 0.0009 | - |
356
+ | 0.5074 | 6000 | 0.0005 | - |
357
+ | 0.5116 | 6050 | 0.0006 | - |
358
+ | 0.5159 | 6100 | 0.0012 | - |
359
+ | 0.5201 | 6150 | 0.0004 | - |
360
+ | 0.5243 | 6200 | 0.0005 | - |
361
+ | 0.5285 | 6250 | 0.0007 | - |
362
+ | 0.5328 | 6300 | 0.0009 | - |
363
+ | 0.5370 | 6350 | 0.0006 | - |
364
+ | 0.5412 | 6400 | 0.0007 | - |
365
+ | 0.5455 | 6450 | 0.0007 | - |
366
+ | 0.5497 | 6500 | 0.0003 | - |
367
+ | 0.5539 | 6550 | 0.0568 | - |
368
+ | 0.5581 | 6600 | 0.0006 | - |
369
+ | 0.5624 | 6650 | 0.0002 | - |
370
+ | 0.5666 | 6700 | 0.0006 | - |
371
+ | 0.5708 | 6750 | 0.0003 | - |
372
+ | 0.5751 | 6800 | 0.0003 | - |
373
+ | 0.5793 | 6850 | 0.0004 | - |
374
+ | 0.5835 | 6900 | 0.0006 | - |
375
+ | 0.5877 | 6950 | 0.0004 | - |
376
+ | 0.5920 | 7000 | 0.0004 | - |
377
+ | 0.5962 | 7050 | 0.0002 | - |
378
+ | 0.6004 | 7100 | 0.0002 | - |
379
+ | 0.6047 | 7150 | 0.001 | - |
380
+ | 0.6089 | 7200 | 0.0002 | - |
381
+ | 0.6131 | 7250 | 0.0004 | - |
382
+ | 0.6173 | 7300 | 0.0009 | - |
383
+ | 0.6216 | 7350 | 0.0003 | - |
384
+ | 0.6258 | 7400 | 0.0003 | - |
385
+ | 0.6300 | 7450 | 0.0018 | - |
386
+ | 0.6342 | 7500 | 0.0004 | - |
387
+ | 0.6385 | 7550 | 0.0035 | - |
388
+ | 0.6427 | 7600 | 0.0012 | - |
389
+ | 0.6469 | 7650 | 0.0005 | - |
390
+ | 0.6512 | 7700 | 0.0003 | - |
391
+ | 0.6554 | 7750 | 0.0003 | - |
392
+ | 0.6596 | 7800 | 0.0004 | - |
393
+ | 0.6638 | 7850 | 0.0004 | - |
394
+ | 0.6681 | 7900 | 0.0004 | - |
395
+ | 0.6723 | 7950 | 0.0003 | - |
396
+ | 0.6765 | 8000 | 0.0002 | - |
397
+ | 0.6808 | 8050 | 0.0002 | - |
398
+ | 0.6850 | 8100 | 0.0008 | - |
399
+ | 0.6892 | 8150 | 0.0003 | - |
400
+ | 0.6934 | 8200 | 0.0002 | - |
401
+ | 0.6977 | 8250 | 0.0003 | - |
402
+ | 0.7019 | 8300 | 0.0002 | - |
403
+ | 0.7061 | 8350 | 0.0024 | - |
404
+ | 0.7104 | 8400 | 0.0022 | - |
405
+ | 0.7146 | 8450 | 0.0004 | - |
406
+ | 0.7188 | 8500 | 0.0092 | - |
407
+ | 0.7230 | 8550 | 0.0002 | - |
408
+ | 0.7273 | 8600 | 0.0001 | - |
409
+ | 0.7315 | 8650 | 0.0002 | - |
410
+ | 0.7357 | 8700 | 0.0003 | - |
411
+ | 0.7400 | 8750 | 0.0005 | - |
412
+ | 0.7442 | 8800 | 0.0002 | - |
413
+ | 0.7484 | 8850 | 0.0005 | - |
414
+ | 0.7526 | 8900 | 0.0002 | - |
415
+ | 0.7569 | 8950 | 0.0002 | - |
416
+ | 0.7611 | 9000 | 0.0002 | - |
417
+ | 0.7653 | 9050 | 0.0002 | - |
418
+ | 0.7696 | 9100 | 0.0001 | - |
419
+ | 0.7738 | 9150 | 0.0002 | - |
420
+ | 0.7780 | 9200 | 0.0004 | - |
421
+ | 0.7822 | 9250 | 0.0003 | - |
422
+ | 0.7865 | 9300 | 0.0003 | - |
423
+ | 0.7907 | 9350 | 0.0002 | - |
424
+ | 0.7949 | 9400 | 0.0005 | - |
425
+ | 0.7992 | 9450 | 0.0002 | - |
426
+ | 0.8034 | 9500 | 0.0002 | - |
427
+ | 0.8076 | 9550 | 0.0017 | - |
428
+ | 0.8118 | 9600 | 0.0004 | - |
429
+ | 0.8161 | 9650 | 0.0003 | - |
430
+ | 0.8203 | 9700 | 0.0002 | - |
431
+ | 0.8245 | 9750 | 0.0002 | - |
432
+ | 0.8288 | 9800 | 0.0001 | - |
433
+ | 0.8330 | 9850 | 0.0001 | - |
434
+ | 0.8372 | 9900 | 0.0001 | - |
435
+ | 0.8414 | 9950 | 0.0005 | - |
436
+ | 0.8457 | 10000 | 0.0001 | - |
437
+ | 0.8499 | 10050 | 0.0001 | - |
438
+ | 0.8541 | 10100 | 0.0002 | - |
439
+ | 0.8584 | 10150 | 0.0002 | - |
440
+ | 0.8626 | 10200 | 0.0003 | - |
441
+ | 0.8668 | 10250 | 0.0003 | - |
442
+ | 0.8710 | 10300 | 0.0002 | - |
443
+ | 0.8753 | 10350 | 0.0002 | - |
444
+ | 0.8795 | 10400 | 0.001 | - |
445
+ | 0.8837 | 10450 | 0.0008 | - |
446
+ | 0.8879 | 10500 | 0.0005 | - |
447
+ | 0.8922 | 10550 | 0.0017 | - |
448
+ | 0.8964 | 10600 | 0.0606 | - |
449
+ | 0.9006 | 10650 | 0.0002 | - |
450
+ | 0.9049 | 10700 | 0.0003 | - |
451
+ | 0.9091 | 10750 | 0.0005 | - |
452
+ | 0.9133 | 10800 | 0.0008 | - |
453
+ | 0.9175 | 10850 | 0.0003 | - |
454
+ | 0.9218 | 10900 | 0.002 | - |
455
+ | 0.9260 | 10950 | 0.0003 | - |
456
+ | 0.9302 | 11000 | 0.0003 | - |
457
+ | 0.9345 | 11050 | 0.0003 | - |
458
+ | 0.9387 | 11100 | 0.0243 | - |
459
+ | 0.9429 | 11150 | 0.0016 | - |
460
+ | 0.9471 | 11200 | 0.021 | - |
461
+ | 0.9514 | 11250 | 0.0003 | - |
462
+ | 0.9556 | 11300 | 0.0006 | - |
463
+ | 0.9598 | 11350 | 0.0166 | - |
464
+ | 0.9641 | 11400 | 0.0014 | - |
465
+ | 0.9683 | 11450 | 0.0004 | - |
466
+ | 0.9725 | 11500 | 0.0006 | - |
467
+ | 0.9767 | 11550 | 0.0001 | - |
468
+ | 0.9810 | 11600 | 0.0002 | - |
469
+ | 0.9852 | 11650 | 0.0021 | - |
470
+ | 0.9894 | 11700 | 0.0004 | - |
471
+ | 0.9937 | 11750 | 0.0002 | - |
472
+ | 0.9979 | 11800 | 0.0003 | - |
473
+ | 1.0 | 11825 | - | 0.0019 |
474
+ | 1.0021 | 11850 | 0.0002 | - |
475
+ | 1.0063 | 11900 | 0.0002 | - |
476
+ | 1.0106 | 11950 | 0.0002 | - |
477
+ | 1.0148 | 12000 | 0.0002 | - |
478
+ | 1.0190 | 12050 | 0.0002 | - |
479
+ | 1.0233 | 12100 | 0.0002 | - |
480
+ | 1.0275 | 12150 | 0.0002 | - |
481
+ | 1.0317 | 12200 | 0.0002 | - |
482
+ | 1.0359 | 12250 | 0.0005 | - |
483
+ | 1.0402 | 12300 | 0.0002 | - |
484
+ | 1.0444 | 12350 | 0.0002 | - |
485
+ | 1.0486 | 12400 | 0.0004 | - |
486
+ | 1.0529 | 12450 | 0.0002 | - |
487
+ | 1.0571 | 12500 | 0.0002 | - |
488
+ | 1.0613 | 12550 | 0.0001 | - |
489
+ | 1.0655 | 12600 | 0.0001 | - |
490
+ | 1.0698 | 12650 | 0.0001 | - |
491
+ | 1.0740 | 12700 | 0.0001 | - |
492
+ | 1.0782 | 12750 | 0.0001 | - |
493
+ | 1.0825 | 12800 | 0.0002 | - |
494
+ | 1.0867 | 12850 | 0.0001 | - |
495
+ | 1.0909 | 12900 | 0.0002 | - |
496
+ | 1.0951 | 12950 | 0.0002 | - |
497
+ | 1.0994 | 13000 | 0.0002 | - |
498
+ | 1.1036 | 13050 | 0.0002 | - |
499
+ | 1.1078 | 13100 | 0.0001 | - |
500
+ | 1.1121 | 13150 | 0.0002 | - |
501
+ | 1.1163 | 13200 | 0.0236 | - |
502
+ | 1.1205 | 13250 | 0.0002 | - |
503
+ | 1.1247 | 13300 | 0.0001 | - |
504
+ | 1.1290 | 13350 | 0.0023 | - |
505
+ | 1.1332 | 13400 | 0.0003 | - |
506
+ | 1.1374 | 13450 | 0.0001 | - |
507
+ | 1.1416 | 13500 | 0.0003 | - |
508
+ | 1.1459 | 13550 | 0.0003 | - |
509
+ | 1.1501 | 13600 | 0.0004 | - |
510
+ | 1.1543 | 13650 | 0.0002 | - |
511
+ | 1.1586 | 13700 | 0.0002 | - |
512
+ | 1.1628 | 13750 | 0.0001 | - |
513
+ | 1.1670 | 13800 | 0.0001 | - |
514
+ | 1.1712 | 13850 | 0.0001 | - |
515
+ | 1.1755 | 13900 | 0.0001 | - |
516
+ | 1.1797 | 13950 | 0.0001 | - |
517
+ | 1.1839 | 14000 | 0.0001 | - |
518
+ | 1.1882 | 14050 | 0.0002 | - |
519
+ | 1.1924 | 14100 | 0.0002 | - |
520
+ | 1.1966 | 14150 | 0.0001 | - |
521
+ | 1.2008 | 14200 | 0.0002 | - |
522
+ | 1.2051 | 14250 | 0.0003 | - |
523
+ | 1.2093 | 14300 | 0.0001 | - |
524
+ | 1.2135 | 14350 | 0.0001 | - |
525
+ | 1.2178 | 14400 | 0.0002 | - |
526
+ | 1.2220 | 14450 | 0.001 | - |
527
+ | 1.2262 | 14500 | 0.0001 | - |
528
+ | 1.2304 | 14550 | 0.0001 | - |
529
+ | 1.2347 | 14600 | 0.0001 | - |
530
+ | 1.2389 | 14650 | 0.0002 | - |
531
+ | 1.2431 | 14700 | 0.0001 | - |
532
+ | 1.2474 | 14750 | 0.0002 | - |
533
+ | 1.2516 | 14800 | 0.0001 | - |
534
+ | 1.2558 | 14850 | 0.0001 | - |
535
+ | 1.2600 | 14900 | 0.0001 | - |
536
+ | 1.2643 | 14950 | 0.0002 | - |
537
+ | 1.2685 | 15000 | 0.0001 | - |
538
+ | 1.2727 | 15050 | 0.0061 | - |
539
+ | 1.2770 | 15100 | 0.0001 | - |
540
+ | 1.2812 | 15150 | 0.0004 | - |
541
+ | 1.2854 | 15200 | 0.0002 | - |
542
+ | 1.2896 | 15250 | 0.0002 | - |
543
+ | 1.2939 | 15300 | 0.0001 | - |
544
+ | 1.2981 | 15350 | 0.0001 | - |
545
+ | 1.3023 | 15400 | 0.0001 | - |
546
+ | 1.3066 | 15450 | 0.0002 | - |
547
+ | 1.3108 | 15500 | 0.0001 | - |
548
+ | 1.3150 | 15550 | 0.0001 | - |
549
+ | 1.3192 | 15600 | 0.002 | - |
550
+ | 1.3235 | 15650 | 0.0004 | - |
551
+ | 1.3277 | 15700 | 0.0001 | - |
552
+ | 1.3319 | 15750 | 0.0001 | - |
553
+ | 1.3362 | 15800 | 0.0002 | - |
554
+ | 1.3404 | 15850 | 0.0001 | - |
555
+ | 1.3446 | 15900 | 0.0001 | - |
556
+ | 1.3488 | 15950 | 0.0001 | - |
557
+ | 1.3531 | 16000 | 0.0002 | - |
558
+ | 1.3573 | 16050 | 0.0001 | - |
559
+ | 1.3615 | 16100 | 0.0003 | - |
560
+ | 1.3658 | 16150 | 0.0001 | - |
561
+ | 1.3700 | 16200 | 0.0001 | - |
562
+ | 1.3742 | 16250 | 0.0001 | - |
563
+ | 1.3784 | 16300 | 0.0001 | - |
564
+ | 1.3827 | 16350 | 0.0001 | - |
565
+ | 1.3869 | 16400 | 0.0001 | - |
566
+ | 1.3911 | 16450 | 0.0004 | - |
567
+ | 1.3953 | 16500 | 0.0002 | - |
568
+ | 1.3996 | 16550 | 0.0001 | - |
569
+ | 1.4038 | 16600 | 0.0001 | - |
570
+ | 1.4080 | 16650 | 0.0001 | - |
571
+ | 1.4123 | 16700 | 0.0001 | - |
572
+ | 1.4165 | 16750 | 0.0001 | - |
573
+ | 1.4207 | 16800 | 0.0001 | - |
574
+ | 1.4249 | 16850 | 0.0001 | - |
575
+ | 1.4292 | 16900 | 0.0001 | - |
576
+ | 1.4334 | 16950 | 0.0024 | - |
577
+ | 1.4376 | 17000 | 0.0001 | - |
578
+ | 1.4419 | 17050 | 0.0002 | - |
579
+ | 1.4461 | 17100 | 0.0001 | - |
580
+ | 1.4503 | 17150 | 0.0001 | - |
581
+ | 1.4545 | 17200 | 0.0001 | - |
582
+ | 1.4588 | 17250 | 0.0001 | - |
583
+ | 1.4630 | 17300 | 0.0606 | - |
584
+ | 1.4672 | 17350 | 0.0004 | - |
585
+ | 1.4715 | 17400 | 0.0001 | - |
586
+ | 1.4757 | 17450 | 0.0007 | - |
587
+ | 1.4799 | 17500 | 0.0001 | - |
588
+ | 1.4841 | 17550 | 0.0001 | - |
589
+ | 1.4884 | 17600 | 0.0001 | - |
590
+ | 1.4926 | 17650 | 0.0002 | - |
591
+ | 1.4968 | 17700 | 0.0015 | - |
592
+ | 1.5011 | 17750 | 0.0001 | - |
593
+ | 1.5053 | 17800 | 0.0001 | - |
594
+ | 1.5095 | 17850 | 0.0002 | - |
595
+ | 1.5137 | 17900 | 0.0002 | - |
596
+ | 1.5180 | 17950 | 0.0001 | - |
597
+ | 1.5222 | 18000 | 0.0001 | - |
598
+ | 1.5264 | 18050 | 0.0001 | - |
599
+ | 1.5307 | 18100 | 0.0001 | - |
600
+ | 1.5349 | 18150 | 0.0002 | - |
601
+ | 1.5391 | 18200 | 0.0001 | - |
602
+ | 1.5433 | 18250 | 0.0001 | - |
603
+ | 1.5476 | 18300 | 0.0001 | - |
604
+ | 1.5518 | 18350 | 0.0001 | - |
605
+ | 1.5560 | 18400 | 0.0002 | - |
606
+ | 1.5603 | 18450 | 0.0001 | - |
607
+ | 1.5645 | 18500 | 0.0001 | - |
608
+ | 1.5687 | 18550 | 0.0001 | - |
609
+ | 1.5729 | 18600 | 0.0001 | - |
610
+ | 1.5772 | 18650 | 0.0001 | - |
611
+ | 1.5814 | 18700 | 0.0002 | - |
612
+ | 1.5856 | 18750 | 0.0001 | - |
613
+ | 1.5899 | 18800 | 0.0001 | - |
614
+ | 1.5941 | 18850 | 0.0001 | - |
615
+ | 1.5983 | 18900 | 0.0009 | - |
616
+ | 1.6025 | 18950 | 0.0001 | - |
617
+ | 1.6068 | 19000 | 0.0002 | - |
618
+ | 1.6110 | 19050 | 0.0013 | - |
619
+ | 1.6152 | 19100 | 0.0001 | - |
620
+ | 1.6195 | 19150 | 0.0005 | - |
621
+ | 1.6237 | 19200 | 0.0001 | - |
622
+ | 1.6279 | 19250 | 0.0016 | - |
623
+ | 1.6321 | 19300 | 0.0001 | - |
624
+ | 1.6364 | 19350 | 0.0001 | - |
625
+ | 1.6406 | 19400 | 0.0015 | - |
626
+ | 1.6448 | 19450 | 0.0001 | - |
627
+ | 1.6490 | 19500 | 0.0001 | - |
628
+ | 1.6533 | 19550 | 0.0001 | - |
629
+ | 1.6575 | 19600 | 0.0001 | - |
630
+ | 1.6617 | 19650 | 0.0001 | - |
631
+ | 1.6660 | 19700 | 0.0001 | - |
632
+ | 1.6702 | 19750 | 0.0001 | - |
633
+ | 1.6744 | 19800 | 0.0001 | - |
634
+ | 1.6786 | 19850 | 0.0001 | - |
635
+ | 1.6829 | 19900 | 0.0001 | - |
636
+ | 1.6871 | 19950 | 0.0001 | - |
637
+ | 1.6913 | 20000 | 0.0001 | - |
638
+ | 1.6956 | 20050 | 0.0001 | - |
639
+ | 1.6998 | 20100 | 0.0001 | - |
640
+ | 1.7040 | 20150 | 0.0001 | - |
641
+ | 1.7082 | 20200 | 0.0001 | - |
642
+ | 1.7125 | 20250 | 0.0001 | - |
643
+ | 1.7167 | 20300 | 0.0001 | - |
644
+ | 1.7209 | 20350 | 0.0001 | - |
645
+ | 1.7252 | 20400 | 0.0001 | - |
646
+ | 1.7294 | 20450 | 0.0001 | - |
647
+ | 1.7336 | 20500 | 0.002 | - |
648
+ | 1.7378 | 20550 | 0.0001 | - |
649
+ | 1.7421 | 20600 | 0.0001 | - |
650
+ | 1.7463 | 20650 | 0.0001 | - |
651
+ | 1.7505 | 20700 | 0.0001 | - |
652
+ | 1.7548 | 20750 | 0.0001 | - |
653
+ | 1.7590 | 20800 | 0.0001 | - |
654
+ | 1.7632 | 20850 | 0.0001 | - |
655
+ | 1.7674 | 20900 | 0.0001 | - |
656
+ | 1.7717 | 20950 | 0.0002 | - |
657
+ | 1.7759 | 21000 | 0.0001 | - |
658
+ | 1.7801 | 21050 | 0.0004 | - |
659
+ | 1.7844 | 21100 | 0.0002 | - |
660
+ | 1.7886 | 21150 | 0.0599 | - |
661
+ | 1.7928 | 21200 | 0.0001 | - |
662
+ | 1.7970 | 21250 | 0.0001 | - |
663
+ | 1.8013 | 21300 | 0.0001 | - |
664
+ | 1.8055 | 21350 | 0.0001 | - |
665
+ | 1.8097 | 21400 | 0.0001 | - |
666
+ | 1.8140 | 21450 | 0.0001 | - |
667
+ | 1.8182 | 21500 | 0.0001 | - |
668
+ | 1.8224 | 21550 | 0.0001 | - |
669
+ | 1.8266 | 21600 | 0.0001 | - |
670
+ | 1.8309 | 21650 | 0.0013 | - |
671
+ | 1.8351 | 21700 | 0.0002 | - |
672
+ | 1.8393 | 21750 | 0.0001 | - |
673
+ | 1.8436 | 21800 | 0.0001 | - |
674
+ | 1.8478 | 21850 | 0.0001 | - |
675
+ | 1.8520 | 21900 | 0.0001 | - |
676
+ | 1.8562 | 21950 | 0.0001 | - |
677
+ | 1.8605 | 22000 | 0.0001 | - |
678
+ | 1.8647 | 22050 | 0.0001 | - |
679
+ | 1.8689 | 22100 | 0.0001 | - |
680
+ | 1.8732 | 22150 | 0.0 | - |
681
+ | 1.8774 | 22200 | 0.0001 | - |
682
+ | 1.8816 | 22250 | 0.0001 | - |
683
+ | 1.8858 | 22300 | 0.0001 | - |
684
+ | 1.8901 | 22350 | 0.0001 | - |
685
+ | 1.8943 | 22400 | 0.0001 | - |
686
+ | 1.8985 | 22450 | 0.0001 | - |
687
+ | 1.9027 | 22500 | 0.0001 | - |
688
+ | 1.9070 | 22550 | 0.0001 | - |
689
+ | 1.9112 | 22600 | 0.0001 | - |
690
+ | 1.9154 | 22650 | 0.0001 | - |
691
+ | 1.9197 | 22700 | 0.0001 | - |
692
+ | 1.9239 | 22750 | 0.0001 | - |
693
+ | 1.9281 | 22800 | 0.0001 | - |
694
+ | 1.9323 | 22850 | 0.0001 | - |
695
+ | 1.9366 | 22900 | 0.0001 | - |
696
+ | 1.9408 | 22950 | 0.0 | - |
697
+ | 1.9450 | 23000 | 0.0016 | - |
698
+ | 1.9493 | 23050 | 0.0001 | - |
699
+ | 1.9535 | 23100 | 0.0002 | - |
700
+ | 1.9577 | 23150 | 0.0001 | - |
701
+ | 1.9619 | 23200 | 0.0001 | - |
702
+ | 1.9662 | 23250 | 0.0001 | - |
703
+ | 1.9704 | 23300 | 0.0001 | - |
704
+ | 1.9746 | 23350 | 0.0001 | - |
705
+ | 1.9789 | 23400 | 0.0001 | - |
706
+ | 1.9831 | 23450 | 0.0001 | - |
707
+ | 1.9873 | 23500 | 0.0016 | - |
708
+ | 1.9915 | 23550 | 0.0001 | - |
709
+ | 1.9958 | 23600 | 0.0001 | - |
710
+ | 2.0 | 23650 | 0.0001 | 0.0008 |
711
+ | 2.0042 | 23700 | 0.0001 | - |
712
+ | 2.0085 | 23750 | 0.0017 | - |
713
+ | 2.0127 | 23800 | 0.0001 | - |
714
+ | 2.0169 | 23850 | 0.0 | - |
715
+ | 2.0211 | 23900 | 0.0001 | - |
716
+ | 2.0254 | 23950 | 0.0001 | - |
717
+ | 2.0296 | 24000 | 0.0001 | - |
718
+ | 2.0338 | 24050 | 0.0001 | - |
719
+ | 2.0381 | 24100 | 0.0001 | - |
720
+ | 2.0423 | 24150 | 0.0001 | - |
721
+ | 2.0465 | 24200 | 0.0001 | - |
722
+ | 2.0507 | 24250 | 0.0001 | - |
723
+ | 2.0550 | 24300 | 0.0001 | - |
724
+ | 2.0592 | 24350 | 0.0001 | - |
725
+ | 2.0634 | 24400 | 0.0001 | - |
726
+ | 2.0677 | 24450 | 0.0 | - |
727
+ | 2.0719 | 24500 | 0.0001 | - |
728
+ | 2.0761 | 24550 | 0.0001 | - |
729
+ | 2.0803 | 24600 | 0.0001 | - |
730
+ | 2.0846 | 24650 | 0.0001 | - |
731
+ | 2.0888 | 24700 | 0.0002 | - |
732
+ | 2.0930 | 24750 | 0.0002 | - |
733
+ | 2.0973 | 24800 | 0.0001 | - |
734
+ | 2.1015 | 24850 | 0.0006 | - |
735
+ | 2.1057 | 24900 | 0.0579 | - |
736
+ | 2.1099 | 24950 | 0.0001 | - |
737
+ | 2.1142 | 25000 | 0.0004 | - |
738
+ | 2.1184 | 25050 | 0.0011 | - |
739
+ | 2.1226 | 25100 | 0.0001 | - |
740
+ | 2.1268 | 25150 | 0.0002 | - |
741
+ | 2.1311 | 25200 | 0.0003 | - |
742
+ | 2.1353 | 25250 | 0.0001 | - |
743
+ | 2.1395 | 25300 | 0.0014 | - |
744
+ | 2.1438 | 25350 | 0.0001 | - |
745
+ | 2.1480 | 25400 | 0.0002 | - |
746
+ | 2.1522 | 25450 | 0.0012 | - |
747
+ | 2.1564 | 25500 | 0.0001 | - |
748
+ | 2.1607 | 25550 | 0.0001 | - |
749
+ | 2.1649 | 25600 | 0.0002 | - |
750
+ | 2.1691 | 25650 | 0.0001 | - |
751
+ | 2.1734 | 25700 | 0.0001 | - |
752
+ | 2.1776 | 25750 | 0.0001 | - |
753
+ | 2.1818 | 25800 | 0.0001 | - |
754
+ | 2.1860 | 25850 | 0.0544 | - |
755
+ | 2.1903 | 25900 | 0.0001 | - |
756
+ | 2.1945 | 25950 | 0.0001 | - |
757
+ | 2.1987 | 26000 | 0.0001 | - |
758
+ | 2.2030 | 26050 | 0.0001 | - |
759
+ | 2.2072 | 26100 | 0.0001 | - |
760
+ | 2.2114 | 26150 | 0.0001 | - |
761
+ | 2.2156 | 26200 | 0.0002 | - |
762
+ | 2.2199 | 26250 | 0.0 | - |
763
+ | 2.2241 | 26300 | 0.0001 | - |
764
+ | 2.2283 | 26350 | 0.0002 | - |
765
+ | 2.2326 | 26400 | 0.0001 | - |
766
+ | 2.2368 | 26450 | 0.0001 | - |
767
+ | 2.2410 | 26500 | 0.0602 | - |
768
+ | 2.2452 | 26550 | 0.0022 | - |
769
+ | 2.2495 | 26600 | 0.0001 | - |
770
+ | 2.2537 | 26650 | 0.0003 | - |
771
+ | 2.2579 | 26700 | 0.0002 | - |
772
+ | 2.2622 | 26750 | 0.0001 | - |
773
+ | 2.2664 | 26800 | 0.0001 | - |
774
+ | 2.2706 | 26850 | 0.0001 | - |
775
+ | 2.2748 | 26900 | 0.0001 | - |
776
+ | 2.2791 | 26950 | 0.0001 | - |
777
+ | 2.2833 | 27000 | 0.0001 | - |
778
+ | 2.2875 | 27050 | 0.0001 | - |
779
+ | 2.2918 | 27100 | 0.0001 | - |
780
+ | 2.2960 | 27150 | 0.0001 | - |
781
+ | 2.3002 | 27200 | 0.0001 | - |
782
+ | 2.3044 | 27250 | 0.0001 | - |
783
+ | 2.3087 | 27300 | 0.0001 | - |
784
+ | 2.3129 | 27350 | 0.0003 | - |
785
+ | 2.3171 | 27400 | 0.0001 | - |
786
+ | 2.3214 | 27450 | 0.0001 | - |
787
+ | 2.3256 | 27500 | 0.0001 | - |
788
+ | 2.3298 | 27550 | 0.0001 | - |
789
+ | 2.3340 | 27600 | 0.0001 | - |
790
+ | 2.3383 | 27650 | 0.0001 | - |
791
+ | 2.3425 | 27700 | 0.0015 | - |
792
+ | 2.3467 | 27750 | 0.001 | - |
793
+ | 2.3510 | 27800 | 0.0002 | - |
794
+ | 2.3552 | 27850 | 0.0001 | - |
795
+ | 2.3594 | 27900 | 0.0001 | - |
796
+ | 2.3636 | 27950 | 0.0001 | - |
797
+ | 2.3679 | 28000 | 0.0002 | - |
798
+ | 2.3721 | 28050 | 0.0001 | - |
799
+ | 2.3763 | 28100 | 0.0001 | - |
800
+ | 2.3805 | 28150 | 0.001 | - |
801
+ | 2.3848 | 28200 | 0.0001 | - |
802
+ | 2.3890 | 28250 | 0.0001 | - |
803
+ | 2.3932 | 28300 | 0.0001 | - |
804
+ | 2.3975 | 28350 | 0.0001 | - |
805
+ | 2.4017 | 28400 | 0.0002 | - |
806
+ | 2.4059 | 28450 | 0.0001 | - |
807
+ | 2.4101 | 28500 | 0.0001 | - |
808
+ | 2.4144 | 28550 | 0.0001 | - |
809
+ | 2.4186 | 28600 | 0.0001 | - |
810
+ | 2.4228 | 28650 | 0.0001 | - |
811
+ | 2.4271 | 28700 | 0.0001 | - |
812
+ | 2.4313 | 28750 | 0.0001 | - |
813
+ | 2.4355 | 28800 | 0.0001 | - |
814
+ | 2.4397 | 28850 | 0.0001 | - |
815
+ | 2.4440 | 28900 | 0.0001 | - |
816
+ | 2.4482 | 28950 | 0.0001 | - |
817
+ | 2.4524 | 29000 | 0.0001 | - |
818
+ | 2.4567 | 29050 | 0.0021 | - |
819
+ | 2.4609 | 29100 | 0.0001 | - |
820
+ | 2.4651 | 29150 | 0.0001 | - |
821
+ | 2.4693 | 29200 | 0.0001 | - |
822
+ | 2.4736 | 29250 | 0.0 | - |
823
+ | 2.4778 | 29300 | 0.0002 | - |
824
+ | 2.4820 | 29350 | 0.0002 | - |
825
+ | 2.4863 | 29400 | 0.0001 | - |
826
+ | 2.4905 | 29450 | 0.0001 | - |
827
+ | 2.4947 | 29500 | 0.0002 | - |
828
+ | 2.4989 | 29550 | 0.0013 | - |
829
+ | 2.5032 | 29600 | 0.0001 | - |
830
+ | 2.5074 | 29650 | 0.0001 | - |
831
+ | 2.5116 | 29700 | 0.0001 | - |
832
+ | 2.5159 | 29750 | 0.0001 | - |
833
+ | 2.5201 | 29800 | 0.0015 | - |
834
+ | 2.5243 | 29850 | 0.0001 | - |
835
+ | 2.5285 | 29900 | 0.0001 | - |
836
+ | 2.5328 | 29950 | 0.0001 | - |
837
+ | 2.5370 | 30000 | 0.0002 | - |
838
+ | 2.5412 | 30050 | 0.0001 | - |
839
+ | 2.5455 | 30100 | 0.0001 | - |
840
+ | 2.5497 | 30150 | 0.0001 | - |
841
+ | 2.5539 | 30200 | 0.0001 | - |
842
+ | 2.5581 | 30250 | 0.0001 | - |
843
+ | 2.5624 | 30300 | 0.0002 | - |
844
+ | 2.5666 | 30350 | 0.0001 | - |
845
+ | 2.5708 | 30400 | 0.0001 | - |
846
+ | 2.5751 | 30450 | 0.0001 | - |
847
+ | 2.5793 | 30500 | 0.0001 | - |
848
+ | 2.5835 | 30550 | 0.0001 | - |
849
+ | 2.5877 | 30600 | 0.0001 | - |
850
+ | 2.5920 | 30650 | 0.0001 | - |
851
+ | 2.5962 | 30700 | 0.0 | - |
852
+ | 2.6004 | 30750 | 0.0001 | - |
853
+ | 2.6047 | 30800 | 0.0001 | - |
854
+ | 2.6089 | 30850 | 0.0001 | - |
855
+ | 2.6131 | 30900 | 0.0001 | - |
856
+ | 2.6173 | 30950 | 0.0001 | - |
857
+ | 2.6216 | 31000 | 0.0001 | - |
858
+ | 2.6258 | 31050 | 0.0001 | - |
859
+ | 2.6300 | 31100 | 0.0001 | - |
860
+ | 2.6342 | 31150 | 0.0001 | - |
861
+ | 2.6385 | 31200 | 0.0001 | - |
862
+ | 2.6427 | 31250 | 0.0001 | - |
863
+ | 2.6469 | 31300 | 0.0001 | - |
864
+ | 2.6512 | 31350 | 0.0024 | - |
865
+ | 2.6554 | 31400 | 0.0001 | - |
866
+ | 2.6596 | 31450 | 0.0001 | - |
867
+ | 2.6638 | 31500 | 0.0025 | - |
868
+ | 2.6681 | 31550 | 0.0001 | - |
869
+ | 2.6723 | 31600 | 0.0001 | - |
870
+ | 2.6765 | 31650 | 0.0002 | - |
871
+ | 2.6808 | 31700 | 0.0001 | - |
872
+ | 2.6850 | 31750 | 0.0 | - |
873
+ | 2.6892 | 31800 | 0.0001 | - |
874
+ | 2.6934 | 31850 | 0.0001 | - |
875
+ | 2.6977 | 31900 | 0.0001 | - |
876
+ | 2.7019 | 31950 | 0.0001 | - |
877
+ | 2.7061 | 32000 | 0.0001 | - |
878
+ | 2.7104 | 32050 | 0.0001 | - |
879
+ | 2.7146 | 32100 | 0.0001 | - |
880
+ | 2.7188 | 32150 | 0.0001 | - |
881
+ | 2.7230 | 32200 | 0.0001 | - |
882
+ | 2.7273 | 32250 | 0.0001 | - |
883
+ | 2.7315 | 32300 | 0.0 | - |
884
+ | 2.7357 | 32350 | 0.0001 | - |
885
+ | 2.7400 | 32400 | 0.0001 | - |
886
+ | 2.7442 | 32450 | 0.0001 | - |
887
+ | 2.7484 | 32500 | 0.0001 | - |
888
+ | 2.7526 | 32550 | 0.0001 | - |
889
+ | 2.7569 | 32600 | 0.0016 | - |
890
+ | 2.7611 | 32650 | 0.0001 | - |
891
+ | 2.7653 | 32700 | 0.0001 | - |
892
+ | 2.7696 | 32750 | 0.0001 | - |
893
+ | 2.7738 | 32800 | 0.0001 | - |
894
+ | 2.7780 | 32850 | 0.0001 | - |
895
+ | 2.7822 | 32900 | 0.0001 | - |
896
+ | 2.7865 | 32950 | 0.0001 | - |
897
+ | 2.7907 | 33000 | 0.0001 | - |
898
+ | 2.7949 | 33050 | 0.0001 | - |
899
+ | 2.7992 | 33100 | 0.0001 | - |
900
+ | 2.8034 | 33150 | 0.0001 | - |
901
+ | 2.8076 | 33200 | 0.0001 | - |
902
+ | 2.8118 | 33250 | 0.0001 | - |
903
+ | 2.8161 | 33300 | 0.0001 | - |
904
+ | 2.8203 | 33350 | 0.0001 | - |
905
+ | 2.8245 | 33400 | 0.0001 | - |
906
+ | 2.8288 | 33450 | 0.0001 | - |
907
+ | 2.8330 | 33500 | 0.0 | - |
908
+ | 2.8372 | 33550 | 0.0 | - |
909
+ | 2.8414 | 33600 | 0.0001 | - |
910
+ | 2.8457 | 33650 | 0.0001 | - |
911
+ | 2.8499 | 33700 | 0.0001 | - |
912
+ | 2.8541 | 33750 | 0.0016 | - |
913
+ | 2.8584 | 33800 | 0.0001 | - |
914
+ | 2.8626 | 33850 | 0.0001 | - |
915
+ | 2.8668 | 33900 | 0.0001 | - |
916
+ | 2.8710 | 33950 | 0.0001 | - |
917
+ | 2.8753 | 34000 | 0.0001 | - |
918
+ | 2.8795 | 34050 | 0.0001 | - |
919
+ | 2.8837 | 34100 | 0.0001 | - |
920
+ | 2.8879 | 34150 | 0.0001 | - |
921
+ | 2.8922 | 34200 | 0.0 | - |
922
+ | 2.8964 | 34250 | 0.0001 | - |
923
+ | 2.9006 | 34300 | 0.0001 | - |
924
+ | 2.9049 | 34350 | 0.0001 | - |
925
+ | 2.9091 | 34400 | 0.0001 | - |
926
+ | 2.9133 | 34450 | 0.0001 | - |
927
+ | 2.9175 | 34500 | 0.0001 | - |
928
+ | 2.9218 | 34550 | 0.0 | - |
929
+ | 2.9260 | 34600 | 0.0001 | - |
930
+ | 2.9302 | 34650 | 0.0001 | - |
931
+ | 2.9345 | 34700 | 0.0001 | - |
932
+ | 2.9387 | 34750 | 0.0155 | - |
933
+ | 2.9429 | 34800 | 0.0001 | - |
934
+ | 2.9471 | 34850 | 0.0 | - |
935
+ | 2.9514 | 34900 | 0.0001 | - |
936
+ | 2.9556 | 34950 | 0.0001 | - |
937
+ | 2.9598 | 35000 | 0.0001 | - |
938
+ | 2.9641 | 35050 | 0.0 | - |
939
+ | 2.9683 | 35100 | 0.0018 | - |
940
+ | 2.9725 | 35150 | 0.0001 | - |
941
+ | 2.9767 | 35200 | 0.0001 | - |
942
+ | 2.9810 | 35250 | 0.0001 | - |
943
+ | 2.9852 | 35300 | 0.0001 | - |
944
+ | 2.9894 | 35350 | 0.0001 | - |
945
+ | 2.9937 | 35400 | 0.0001 | - |
946
+ | 2.9979 | 35450 | 0.0001 | - |
947
+ | 3.0 | 35475 | - | 0.0003 |
948
+ | 3.0021 | 35500 | 0.0001 | - |
949
+ | 3.0063 | 35550 | 0.0001 | - |
950
+ | 3.0106 | 35600 | 0.0022 | - |
951
+ | 3.0148 | 35650 | 0.0001 | - |
952
+ | 3.0190 | 35700 | 0.0001 | - |
953
+ | 3.0233 | 35750 | 0.0001 | - |
954
+ | 3.0275 | 35800 | 0.0 | - |
955
+ | 3.0317 | 35850 | 0.0019 | - |
956
+ | 3.0359 | 35900 | 0.0 | - |
957
+ | 3.0402 | 35950 | 0.0001 | - |
958
+ | 3.0444 | 36000 | 0.0001 | - |
959
+ | 3.0486 | 36050 | 0.0001 | - |
960
+ | 3.0529 | 36100 | 0.0 | - |
961
+ | 3.0571 | 36150 | 0.0 | - |
962
+ | 3.0613 | 36200 | 0.0001 | - |
963
+ | 3.0655 | 36250 | 0.0001 | - |
964
+ | 3.0698 | 36300 | 0.0001 | - |
965
+ | 3.0740 | 36350 | 0.0001 | - |
966
+ | 3.0782 | 36400 | 0.0001 | - |
967
+ | 3.0825 | 36450 | 0.0 | - |
968
+ | 3.0867 | 36500 | 0.0001 | - |
969
+ | 3.0909 | 36550 | 0.0001 | - |
970
+ | 3.0951 | 36600 | 0.0001 | - |
971
+ | 3.0994 | 36650 | 0.0001 | - |
972
+ | 3.1036 | 36700 | 0.0001 | - |
973
+ | 3.1078 | 36750 | 0.0 | - |
974
+ | 3.1121 | 36800 | 0.0001 | - |
975
+ | 3.1163 | 36850 | 0.0001 | - |
976
+ | 3.1205 | 36900 | 0.0 | - |
977
+ | 3.1247 | 36950 | 0.0001 | - |
978
+ | 3.1290 | 37000 | 0.0001 | - |
979
+ | 3.1332 | 37050 | 0.0001 | - |
980
+ | 3.1374 | 37100 | 0.0001 | - |
981
+ | 3.1416 | 37150 | 0.0001 | - |
982
+ | 3.1459 | 37200 | 0.0001 | - |
983
+ | 3.1501 | 37250 | 0.0001 | - |
984
+ | 3.1543 | 37300 | 0.0001 | - |
985
+ | 3.1586 | 37350 | 0.0001 | - |
986
+ | 3.1628 | 37400 | 0.0055 | - |
987
+ | 3.1670 | 37450 | 0.0 | - |
988
+ | 3.1712 | 37500 | 0.0001 | - |
989
+ | 3.1755 | 37550 | 0.0019 | - |
990
+ | 3.1797 | 37600 | 0.0001 | - |
991
+ | 3.1839 | 37650 | 0.0001 | - |
992
+ | 3.1882 | 37700 | 0.0 | - |
993
+ | 3.1924 | 37750 | 0.0 | - |
994
+ | 3.1966 | 37800 | 0.0001 | - |
995
+ | 3.2008 | 37850 | 0.0001 | - |
996
+ | 3.2051 | 37900 | 0.0 | - |
997
+ | 3.2093 | 37950 | 0.0001 | - |
998
+ | 3.2135 | 38000 | 0.0001 | - |
999
+ | 3.2178 | 38050 | 0.0001 | - |
1000
+ | 3.2220 | 38100 | 0.0 | - |
1001
+ | 3.2262 | 38150 | 0.0001 | - |
1002
+ | 3.2304 | 38200 | 0.0 | - |
1003
+ | 3.2347 | 38250 | 0.0001 | - |
1004
+ | 3.2389 | 38300 | 0.0001 | - |
1005
+ | 3.2431 | 38350 | 0.0 | - |
1006
+ | 3.2474 | 38400 | 0.0001 | - |
1007
+ | 3.2516 | 38450 | 0.0001 | - |
1008
+ | 3.2558 | 38500 | 0.0 | - |
1009
+ | 3.2600 | 38550 | 0.0 | - |
1010
+ | 3.2643 | 38600 | 0.0 | - |
1011
+ | 3.2685 | 38650 | 0.0017 | - |
1012
+ | 3.2727 | 38700 | 0.0095 | - |
1013
+ | 3.2770 | 38750 | 0.0001 | - |
1014
+ | 3.2812 | 38800 | 0.0001 | - |
1015
+ | 3.2854 | 38850 | 0.0 | - |
1016
+ | 3.2896 | 38900 | 0.0001 | - |
1017
+ | 3.2939 | 38950 | 0.0 | - |
1018
+ | 3.2981 | 39000 | 0.0001 | - |
1019
+ | 3.3023 | 39050 | 0.0 | - |
1020
+ | 3.3066 | 39100 | 0.0001 | - |
1021
+ | 3.3108 | 39150 | 0.0 | - |
1022
+ | 3.3150 | 39200 | 0.0 | - |
1023
+ | 3.3192 | 39250 | 0.0001 | - |
1024
+ | 3.3235 | 39300 | 0.0001 | - |
1025
+ | 3.3277 | 39350 | 0.0 | - |
1026
+ | 3.3319 | 39400 | 0.0001 | - |
1027
+ | 3.3362 | 39450 | 0.0001 | - |
1028
+ | 3.3404 | 39500 | 0.0001 | - |
1029
+ | 3.3446 | 39550 | 0.0 | - |
1030
+ | 3.3488 | 39600 | 0.0001 | - |
1031
+ | 3.3531 | 39650 | 0.0 | - |
1032
+ | 3.3573 | 39700 | 0.0001 | - |
1033
+ | 3.3615 | 39750 | 0.0001 | - |
1034
+ | 3.3658 | 39800 | 0.0022 | - |
1035
+ | 3.3700 | 39850 | 0.0001 | - |
1036
+ | 3.3742 | 39900 | 0.0001 | - |
1037
+ | 3.3784 | 39950 | 0.0 | - |
1038
+ | 3.3827 | 40000 | 0.0 | - |
1039
+ | 3.3869 | 40050 | 0.0 | - |
1040
+ | 3.3911 | 40100 | 0.0001 | - |
1041
+ | 3.3953 | 40150 | 0.0 | - |
1042
+ | 3.3996 | 40200 | 0.0 | - |
1043
+ | 3.4038 | 40250 | 0.0 | - |
1044
+ | 3.4080 | 40300 | 0.0001 | - |
1045
+ | 3.4123 | 40350 | 0.0 | - |
1046
+ | 3.4165 | 40400 | 0.0001 | - |
1047
+ | 3.4207 | 40450 | 0.0 | - |
1048
+ | 3.4249 | 40500 | 0.0001 | - |
1049
+ | 3.4292 | 40550 | 0.0001 | - |
1050
+ | 3.4334 | 40600 | 0.0001 | - |
1051
+ | 3.4376 | 40650 | 0.0 | - |
1052
+ | 3.4419 | 40700 | 0.0001 | - |
1053
+ | 3.4461 | 40750 | 0.0 | - |
1054
+ | 3.4503 | 40800 | 0.0 | - |
1055
+ | 3.4545 | 40850 | 0.0 | - |
1056
+ | 3.4588 | 40900 | 0.0 | - |
1057
+ | 3.4630 | 40950 | 0.0001 | - |
1058
+ | 3.4672 | 41000 | 0.0 | - |
1059
+ | 3.4715 | 41050 | 0.0 | - |
1060
+ | 3.4757 | 41100 | 0.0001 | - |
1061
+ | 3.4799 | 41150 | 0.0016 | - |
1062
+ | 3.4841 | 41200 | 0.0 | - |
1063
+ | 3.4884 | 41250 | 0.0001 | - |
1064
+ | 3.4926 | 41300 | 0.0 | - |
1065
+ | 3.4968 | 41350 | 0.0001 | - |
1066
+ | 3.5011 | 41400 | 0.0 | - |
1067
+ | 3.5053 | 41450 | 0.0 | - |
1068
+ | 3.5095 | 41500 | 0.0001 | - |
1069
+ | 3.5137 | 41550 | 0.0 | - |
1070
+ | 3.5180 | 41600 | 0.0 | - |
1071
+ | 3.5222 | 41650 | 0.0019 | - |
1072
+ | 3.5264 | 41700 | 0.0001 | - |
1073
+ | 3.5307 | 41750 | 0.0001 | - |
1074
+ | 3.5349 | 41800 | 0.0001 | - |
1075
+ | 3.5391 | 41850 | 0.0001 | - |
1076
+ | 3.5433 | 41900 | 0.0023 | - |
1077
+ | 3.5476 | 41950 | 0.0001 | - |
1078
+ | 3.5518 | 42000 | 0.0 | - |
1079
+ | 3.5560 | 42050 | 0.0001 | - |
1080
+ | 3.5603 | 42100 | 0.0001 | - |
1081
+ | 3.5645 | 42150 | 0.0 | - |
1082
+ | 3.5687 | 42200 | 0.0 | - |
1083
+ | 3.5729 | 42250 | 0.0 | - |
1084
+ | 3.5772 | 42300 | 0.0 | - |
1085
+ | 3.5814 | 42350 | 0.0001 | - |
1086
+ | 3.5856 | 42400 | 0.0 | - |
1087
+ | 3.5899 | 42450 | 0.0 | - |
1088
+ | 3.5941 | 42500 | 0.0 | - |
1089
+ | 3.5983 | 42550 | 0.0 | - |
1090
+ | 3.6025 | 42600 | 0.0001 | - |
1091
+ | 3.6068 | 42650 | 0.0 | - |
1092
+ | 3.6110 | 42700 | 0.0001 | - |
1093
+ | 3.6152 | 42750 | 0.0001 | - |
1094
+ | 3.6195 | 42800 | 0.0001 | - |
1095
+ | 3.6237 | 42850 | 0.0001 | - |
1096
+ | 3.6279 | 42900 | 0.0001 | - |
1097
+ | 3.6321 | 42950 | 0.0 | - |
1098
+ | 3.6364 | 43000 | 0.0 | - |
1099
+ | 3.6406 | 43050 | 0.0 | - |
1100
+ | 3.6448 | 43100 | 0.0001 | - |
1101
+ | 3.6490 | 43150 | 0.0 | - |
1102
+ | 3.6533 | 43200 | 0.0001 | - |
1103
+ | 3.6575 | 43250 | 0.0001 | - |
1104
+ | 3.6617 | 43300 | 0.0001 | - |
1105
+ | 3.6660 | 43350 | 0.0001 | - |
1106
+ | 3.6702 | 43400 | 0.0 | - |
1107
+ | 3.6744 | 43450 | 0.0024 | - |
1108
+ | 3.6786 | 43500 | 0.0 | - |
1109
+ | 3.6829 | 43550 | 0.0001 | - |
1110
+ | 3.6871 | 43600 | 0.002 | - |
1111
+ | 3.6913 | 43650 | 0.0 | - |
1112
+ | 3.6956 | 43700 | 0.0 | - |
1113
+ | 3.6998 | 43750 | 0.0001 | - |
1114
+ | 3.7040 | 43800 | 0.0001 | - |
1115
+ | 3.7082 | 43850 | 0.0 | - |
1116
+ | 3.7125 | 43900 | 0.0 | - |
1117
+ | 3.7167 | 43950 | 0.0001 | - |
1118
+ | 3.7209 | 44000 | 0.0 | - |
1119
+ | 3.7252 | 44050 | 0.0001 | - |
1120
+ | 3.7294 | 44100 | 0.0 | - |
1121
+ | 3.7336 | 44150 | 0.0 | - |
1122
+ | 3.7378 | 44200 | 0.0001 | - |
1123
+ | 3.7421 | 44250 | 0.0 | - |
1124
+ | 3.7463 | 44300 | 0.0 | - |
1125
+ | 3.7505 | 44350 | 0.0001 | - |
1126
+ | 3.7548 | 44400 | 0.0 | - |
1127
+ | 3.7590 | 44450 | 0.0 | - |
1128
+ | 3.7632 | 44500 | 0.0001 | - |
1129
+ | 3.7674 | 44550 | 0.0 | - |
1130
+ | 3.7717 | 44600 | 0.0 | - |
1131
+ | 3.7759 | 44650 | 0.0 | - |
1132
+ | 3.7801 | 44700 | 0.0022 | - |
1133
+ | 3.7844 | 44750 | 0.0 | - |
1134
+ | 3.7886 | 44800 | 0.0001 | - |
1135
+ | 3.7928 | 44850 | 0.0 | - |
1136
+ | 3.7970 | 44900 | 0.0001 | - |
1137
+ | 3.8013 | 44950 | 0.0001 | - |
1138
+ | 3.8055 | 45000 | 0.0 | - |
1139
+ | 3.8097 | 45050 | 0.0 | - |
1140
+ | 3.8140 | 45100 | 0.0 | - |
1141
+ | 3.8182 | 45150 | 0.0 | - |
1142
+ | 3.8224 | 45200 | 0.0 | - |
1143
+ | 3.8266 | 45250 | 0.0 | - |
1144
+ | 3.8309 | 45300 | 0.0001 | - |
1145
+ | 3.8351 | 45350 | 0.0 | - |
1146
+ | 3.8393 | 45400 | 0.0001 | - |
1147
+ | 3.8436 | 45450 | 0.0001 | - |
1148
+ | 3.8478 | 45500 | 0.0 | - |
1149
+ | 3.8520 | 45550 | 0.0001 | - |
1150
+ | 3.8562 | 45600 | 0.0001 | - |
1151
+ | 3.8605 | 45650 | 0.0 | - |
1152
+ | 3.8647 | 45700 | 0.0 | - |
1153
+ | 3.8689 | 45750 | 0.0 | - |
1154
+ | 3.8732 | 45800 | 0.0001 | - |
1155
+ | 3.8774 | 45850 | 0.0015 | - |
1156
+ | 3.8816 | 45900 | 0.0001 | - |
1157
+ | 3.8858 | 45950 | 0.0 | - |
1158
+ | 3.8901 | 46000 | 0.0 | - |
1159
+ | 3.8943 | 46050 | 0.0001 | - |
1160
+ | 3.8985 | 46100 | 0.0 | - |
1161
+ | 3.9027 | 46150 | 0.0 | - |
1162
+ | 3.9070 | 46200 | 0.0 | - |
1163
+ | 3.9112 | 46250 | 0.0 | - |
1164
+ | 3.9154 | 46300 | 0.0 | - |
1165
+ | 3.9197 | 46350 | 0.0 | - |
1166
+ | 3.9239 | 46400 | 0.0 | - |
1167
+ | 3.9281 | 46450 | 0.0 | - |
1168
+ | 3.9323 | 46500 | 0.0 | - |
1169
+ | 3.9366 | 46550 | 0.0001 | - |
1170
+ | 3.9408 | 46600 | 0.0001 | - |
1171
+ | 3.9450 | 46650 | 0.0001 | - |
1172
+ | 3.9493 | 46700 | 0.0001 | - |
1173
+ | 3.9535 | 46750 | 0.0 | - |
1174
+ | 3.9577 | 46800 | 0.0 | - |
1175
+ | 3.9619 | 46850 | 0.0 | - |
1176
+ | 3.9662 | 46900 | 0.0 | - |
1177
+ | 3.9704 | 46950 | 0.0 | - |
1178
+ | 3.9746 | 47000 | 0.0 | - |
1179
+ | 3.9789 | 47050 | 0.0 | - |
1180
+ | 3.9831 | 47100 | 0.0001 | - |
1181
+ | 3.9873 | 47150 | 0.0001 | - |
1182
+ | 3.9915 | 47200 | 0.0021 | - |
1183
+ | 3.9958 | 47250 | 0.0 | - |
1184
+ | **4.0** | **47300** | **0.0** | **0.0002** |
1185
+
1186
+ * The bold row denotes the saved checkpoint.
1187
+ ### Framework Versions
1188
+ - Python: 3.10.14
1189
+ - SetFit: 1.0.3
1190
+ - Sentence Transformers: 3.0.1
1191
+ - Transformers: 4.39.0
1192
+ - PyTorch: 2.4.0+cu121
1193
+ - Datasets: 2.20.0
1194
+ - Tokenizers: 0.15.2
1195
+
1196
+ ## Citation
1197
+
1198
+ ### BibTeX
1199
+ ```bibtex
1200
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
1201
+ doi = {10.48550/ARXIV.2209.11055},
1202
+ url = {https://arxiv.org/abs/2209.11055},
1203
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
1204
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
1205
+ title = {Efficient Few-Shot Learning Without Prompts},
1206
+ publisher = {arXiv},
1207
+ year = {2022},
1208
+ copyright = {Creative Commons Attribution 4.0 International}
1209
+ }
1210
+ ```
1211
+
1212
+ <!--
1213
+ ## Glossary
1214
+
1215
+ *Clearly define terms in order to be accessible across audiences.*
1216
+ -->
1217
+
1218
+ <!--
1219
+ ## Model Card Authors
1220
+
1221
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1222
+ -->
1223
+
1224
+ <!--
1225
+ ## Model Card Contact
1226
+
1227
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1228
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_47300",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "analyze",
4
+ "analyze advantages",
5
+ "analyze best practices",
6
+ "analyze business proposal",
7
+ "analyze data",
8
+ "analyze data backup and recovery",
9
+ "analyze data visualization",
10
+ "analyze feedback",
11
+ "analyze information",
12
+ "analyze information technology security policy",
13
+ "analyze job descriptions",
14
+ "analyze marketing campaign",
15
+ "analyze packaging design",
16
+ "analyze process",
17
+ "analyze product description",
18
+ "analyze product rebranding",
19
+ "analyze product recall",
20
+ "analyze social media campaign",
21
+ "analyze time management",
22
+ "analyze trends",
23
+ "analyze website concept",
24
+ "bake",
25
+ "define",
26
+ "explain",
27
+ "explain the importance of user experience design",
28
+ "generate business proposal",
29
+ "generate crisis communication plan",
30
+ "generate ideas",
31
+ "generate learning plan",
32
+ "generate product description",
33
+ "generate product roadmap",
34
+ "generate project proposal",
35
+ "generate recommendations",
36
+ "generate resume",
37
+ "generate social media campaign",
38
+ "generate template",
39
+ "generate training program outline",
40
+ "learn a language",
41
+ "manage time",
42
+ "outline steps",
43
+ "provide general information",
44
+ "recommend",
45
+ "summarize advantages",
46
+ "summarize financial report"
47
+ ],
48
+ "normalize_embeddings": false
49
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa9af53d2b727fdc89079ec591802688316998dd14ac62bedbe738789cee87d6
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a93878927846087328bf11ce325ba4e24677804e2edcf898dc4bdcbb9aea7545
3
+ size 271879
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff