--- pipeline_tag: image-to-text --- ## Usage: ``` from transformers import BlipProcessor, BlipForConditionalGeneration import torch from PIL import Image processor = BlipProcessor.from_pretrained("prasanna2003/blip-image-captioning") if processor.tokenizer.eos_token is None: processor.tokenizer.eos_token = '<|eos|>' model = BlipForConditionalGeneration.from_pretrained("prasanna2003/blip-image-captioning") image = Image.open('file_name.jpg').convert('RGB') prompt = """Instruction: Generate a single line caption of the Image. output: """ inputs = processor(image, prompt, return_tensors="pt") output = model.generate(**inputs, max_length=100) print(processor.tokenizer.decode(output[0])) ```