File size: 8,340 Bytes
8a00d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, random_split
from text_encoder import *
from vision_encoder import *
import os
import json
import numpy as np
import random
from tqdm import tqdm
import datetime

# Vision Caption Dataset
class VisionCaptionDataset(torch.utils.data.Dataset):
    def __init__(self, captions_path, embeddings_dir, normalize=True):
        with open(captions_path, 'r') as f:
            self.captions_dict = json.load(f)

        self.embeddings_dir = embeddings_dir
        self.image_ids = list(self.captions_dict.keys())
        self.normalize = normalize

    def __len__(self):
        return len(self.image_ids)

    def __getitem__(self, idx):
        image_id = self.image_ids[idx]
        
        caption_entry = random.choice(self.captions_dict[image_id])
        tokenized_caption = caption_entry["tokenized"]
        attention_mask = caption_entry["attention_mask"]

        embedding_path = os.path.join(self.embeddings_dir, f"{image_id}.npy")
        embedding = np.load(embedding_path)

        embedding = torch.tensor(embedding, dtype=torch.float32)
        tokenized_caption = torch.tensor(tokenized_caption, dtype=torch.long)
        attention_mask = torch.tensor(attention_mask, dtype=torch.long)

        return embedding, tokenized_caption, attention_mask


class JointNetwork(nn.Module):
    def __init__(self):
        super(JointNetwork, self).__init__()
        
        self.text_encoder = modernBERT("answerdotai/ModernBERT-base")
        
        for param in self.text_encoder.parameters():
            param.requires_grad = True

        self.vision_projector = nn.Linear(1152, 512)
        self.text_projector = nn.Linear(768, 512)

    def forward(self, tokenized_text, image_encoding):
        vision_patch_pooled = image_encoding.mean(dim=1)  
        text_output = self.text_encoder(tokenized_text)  
        text_pooled = text_output.mean(dim=1)  

        vision_embedded = self.vision_projector(vision_patch_pooled)  
        text_embedded = self.text_projector(text_pooled)  

        vision_embedded = F.normalize(vision_embedded, dim=1)
        text_embedded = F.normalize(text_embedded, dim=1)

        return text_embedded, vision_embedded


def infoNCE_loss(text_features, vision_features, temperature=0.07):
    text_features = F.normalize(text_features, p=2, dim=-1)
    vision_features = F.normalize(vision_features, p=2, dim=-1)

    similarity_matrix = torch.matmul(text_features, vision_features.T) / temperature
    batch_size = vision_features.size(0)
    labels = torch.arange(batch_size, device=vision_features.device)

    loss_text_to_image = F.cross_entropy(similarity_matrix, labels)
    loss_image_to_text = F.cross_entropy(similarity_matrix.T, labels)

    return (loss_text_to_image + loss_image_to_text) / 2


def train_model(model, train_loader, val_loader, optimizer, scheduler, num_epochs=5, freeze_text_encoder=True, checkpoint_path=None):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    best_val_loss = float('inf')  # Initialize with a very high value

    # Freeze text encoder if specified
    if freeze_text_encoder:
        for param in model.text_encoder.parameters():
            param.requires_grad = False

    # Ensure new layers are trainable
    for param in model.vision_projector.parameters():
        param.requires_grad = True
    for param in model.text_projector.parameters():
        param.requires_grad = True

    model.to(device)
    
    for epoch in range(num_epochs):

        # Train loop
        model.train()
        total_loss = 0.0

        print(f"\nEpoch {epoch + 1}/{num_epochs} - Training:")
        train_progress = tqdm(train_loader, desc="Training", leave=True)

        for image_embeddings, tokenized_captions, attention_masks in train_progress:
            text_inputs = {"input_ids": tokenized_captions.to(device), "attention_mask": attention_masks.to(device)}
            image_embeddings = image_embeddings.to(device)

            optimizer.zero_grad()
            text_features, vision_features = model(text_inputs, image_embeddings)
            loss = infoNCE_loss(text_features, vision_features)
            loss.backward()
            optimizer.step()
            total_loss += loss.item()
            train_progress.set_postfix(loss=loss.item())

        scheduler.step()

        # Validation Loop
        model.eval()
        val_loss = 0.0

        print(f"\nEpoch {epoch + 1}/{num_epochs} - Validation:")
        val_progress = tqdm(val_loader, desc="Validation", leave=True)

        with torch.no_grad():
            for image_embeddings, tokenized_captions, attention_masks in val_progress:
                text_inputs = {"input_ids": tokenized_captions.to(device), "attention_mask": attention_masks.to(device)}
                image_embeddings = image_embeddings.to(device)

                text_features, vision_features = model(text_inputs, image_embeddings)
                loss = infoNCE_loss(text_features, vision_features)
                val_loss += loss.item()
                val_progress.set_postfix(loss=loss.item())

        avg_train_loss = total_loss / len(train_loader)
        avg_val_loss = val_loss / len(val_loader)
        print(f"\nEpoch [{epoch+1}/{num_epochs}], Train Loss: {avg_train_loss:.4f}, Val Loss: {avg_val_loss:.4f}")

        # Save best model
        if checkpoint_path is not None:
            if avg_val_loss < best_val_loss:
                best_val_loss = avg_val_loss
                torch.save({
                    'epoch': epoch + 1,
                    'model_state_dict': model.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'val_loss': best_val_loss
                }, checkpoint_path)
                print(f"New Best Model Saved at: {checkpoint_path} (Val Loss: {best_val_loss:.4f})")

    print("Training completed!")



if __name__ == "__main__":
    # Set random seed for reproducibility
    # torch.manual_seed(42)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Paths for dataset
    captions_path = '/mnt/nvme/shared_A/datasets/flickr30k/data/captions_tokenized.json'
    # embeddings_dir = '/mnt/nvme/shared_A/datasets/flickr30k/data/reduced_vision_embeddings'
    embeddings_dir = '/mnt/nvme/shared_A/datasets/flickr30k/data/vision_embeddings_reduced2'

    # Initialize datasets and loaders
    full_dataset = VisionCaptionDataset(captions_path, embeddings_dir)
    train_size = int(0.85 * len(full_dataset))
    val_size = len(full_dataset) - train_size
    train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])

    train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=8, pin_memory=True)
    val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False, num_workers=8, pin_memory=True)

    # Initialize model, optimizer, and scheduler
    model = JointNetwork().to(device)

    checkpoint_path = f"./checkpoints/model_checkpoint_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.pth"

    # **Phase 1 Configuration: Training new layers only**
    initial_lr = 1e-4
    min_lr = 1e-6
    num_epochs = 16
    optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=initial_lr)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=min_lr)

    # **Phase 1: Train new layers only, freeze text encoder**
    print("\n### Phase 1: Training new layers only (Text Encoder Frozen) ###")
    train_model(model, train_loader, val_loader, optimizer, scheduler, num_epochs=num_epochs, freeze_text_encoder=True, checkpoint_path=checkpoint_path)

    # # **Phase 2 Configuration: Fine-tuning with adjusted learning rate**
    # initial_lr = 1e-4
    # min_lr = 1e-6
    # num_epochs = 3
    # optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=initial_lr)
    # scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=min_lr)

    # print("\n### Phase 2: Fine-tuning text encoder and new layers ###")
    # train_model(model, train_loader, val_loader, optimizer, scheduler, num_epochs=num_epochs, freeze_text_encoder=False, checkpoint_path=checkpoint_path)