File size: 8,237 Bytes
8a00d0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Image search with modernBERT"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from _dataset.preprocess_images import *\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"pipeline = VisionPreprocessor(device, param_dtype=torch.float32)\n",
"\n",
"num_images = 25\n",
"input_directory = \"/mnt/nvme/shared_A/datasets/coco-image-caption/versions/1/val2017/val2017\"\n",
"image_paths = [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]\n",
"\n",
"# Shuffle and take the first 25 images\n",
"# random.shuffle(image_paths)\n",
"image_paths = image_paths[:num_images]\n",
"\n",
"# Print the selected image paths\n",
"print(\"Selected Image Paths:\")\n",
"for path in image_paths:\n",
" print(path)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import shutil\n",
"\n",
"# Specify the output directory\n",
"output_directory = \"/mnt/nvme/shared_A/datasets/coco-image-caption/versions/1/val2017/vision_embeddings\"\n",
"\n",
"# Clear the vision embeddings directory if it exists, otherwise create it\n",
"if os.path.exists(output_directory):\n",
" shutil.rmtree(output_directory)\n",
" print(f\"Existing directory cleared: {output_directory}\")\n",
"os.makedirs(output_directory, exist_ok=True)\n",
"\n",
"# Process all images in the input directory\n",
"pipeline.process_directory(image_paths, output_directory)\n",
"print(\"Image embeddings saved!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from train import JointNetwork\n",
"\n",
"def load_checkpoint_and_prepare_model(checkpoint_path, device=\"cuda\"):\n",
" \"\"\"Load trained JointNetwork() from checkpoint\"\"\"\n",
" device = torch.device(device)\n",
" model = JointNetwork()\n",
" checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)\n",
" model.load_state_dict(checkpoint['model_state_dict'])\n",
" model.to(device)\n",
" model.eval()\n",
" model.device = device\n",
" print(f\"Model loaded successfully from {checkpoint_path}.\")\n",
" return model\n",
"\n",
"def get_text_embedding(model, text_prompt):\n",
" \"\"\"Encode a text prompt to get its embedding using the modernBERT encoder.\"\"\"\n",
" tokenized_text = model.text_encoder.tokenizer(text_prompt, return_tensors=\"pt\").to(model.device)\n",
" with torch.no_grad():\n",
" text_features = model.text_encoder(tokenized_text)\n",
" text_features = model.text_projector(text_features.mean(dim=1))\n",
" text_features = F.normalize(text_features, dim=1)\n",
" return text_features\n",
"\n",
"def load_image_embeddings(model, embeddings_dir):\n",
" \"\"\"Load all precomputed image embeddings from the specified directory.\"\"\"\n",
" vision_embeddings = []\n",
" for file in sorted(os.listdir(embeddings_dir)):\n",
" if file.endswith(\".npy\"):\n",
" image_encoding = torch.tensor(np.load(os.path.join(embeddings_dir, file)), dtype=torch.float32).to(model.device)\n",
" vision_pooled = image_encoding.mean(dim=0).unsqueeze(0)\n",
" vision_embedded = model.vision_projector(vision_pooled)\n",
" vision_embedded = F.normalize(vision_embedded, dim=1)\n",
" vision_embeddings.append(vision_embedded)\n",
" \n",
" if len(vision_embeddings) == 0:\n",
" raise ValueError(\"No vision embeddings found in the specified directory.\")\n",
" print(f\"Vision embeddings loaded successfully from {embeddings_dir}.\")\n",
" return torch.stack(vision_embeddings).squeeze(1)\n",
"\n",
"def compare_text_to_images(text_embedding, vision_embeddings):\n",
" \"\"\"Compare a text embedding against a batch of image embeddings using cosine similarity.\"\"\"\n",
" cosine_similarities = torch.matmul(text_embedding, vision_embeddings.T).squeeze(0)\n",
" similarity_scores = cosine_similarities.cpu().detach().numpy()\n",
" ranked_indices = similarity_scores.argsort()[::-1] # Sort in descending order\n",
" return ranked_indices, similarity_scores\n",
"\n",
"\n",
"\n",
"# Paths and settings\n",
"checkpoint_path = \"/home/nolan4/projects/hf-contest/checkpoints/model_checkpoint_20250109_102039.pth\"\n",
"embeddings_dir = \"/mnt/nvme/shared_A/datasets/coco-image-caption/versions/1/val2017/vision_embeddings\"\n",
"\n",
"# Load the model and precomputed vision embeddings\n",
"model = load_checkpoint_and_prepare_model(checkpoint_path)\n",
"vision_embeddings = load_image_embeddings(model, embeddings_dir)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import os\n",
"from PIL import Image\n",
"\n",
"def display_images_from_paths(image_paths, num_images=5):\n",
"\n",
" num_images = min(num_images, len(image_paths))\n",
" if num_images == 0:\n",
" print(\"No images found in the directory.\")\n",
" return\n",
"\n",
" plt.figure(figsize=(12, 8))\n",
" for i, image_path in enumerate(image_paths[:num_images]):\n",
" img = Image.open(image_path)\n",
" plt.subplot(1, num_images, i + 1)\n",
" plt.imshow(img)\n",
" plt.axis('off') \n",
" plt.title(f\"{os.path.basename(image_path).split('.')[0]}\")\n",
"\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
"# Example usage\n",
"# random.shuffle(image_paths)\n",
"display_images_from_paths(image_paths, num_images=10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Paths and settings\n",
"text_prompt = \"cars driving down the road\"\n",
"# text_prompt = \"stuffed brown teddy bear\"\n",
"\n",
"\n",
"# Load the model and embeddings\n",
"text_embedding = get_text_embedding(model, text_prompt)\n",
"\n",
"# Perform comparison and display results\n",
"ranked_indices, similarity_scores = compare_text_to_images(text_embedding, vision_embeddings)\n",
"print(f\"\\nTop 5 Most Similar Images:\")\n",
"for idx in ranked_indices[:5]:\n",
" print(f\"Image Index: {idx}, Similarity Score: {similarity_scores[idx]:.4f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Ensure ranked_indices is converted to a Python list\n",
"selected_image_paths = [image_paths[idx] for idx in ranked_indices[:10]]\n",
"\n",
"# Display the top N ranked images\n",
"display_images_from_paths(selected_image_paths, num_images=4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "hf-env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|