from transformers import AutoTokenizer, ModernBertModel import torch import torch.nn as nn import torch.optim as optim import pdb class modernBERT(nn.Module): def __init__(self, model_name="answerdotai/ModernBERT-base"): super(modernBERT, self).__init__() self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.bert = ModernBertModel.from_pretrained(model_name) def forward(self, inputs): # inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True) outputs = self.bert(**inputs) return outputs.last_hidden_state # logits # Example training loop if __name__ == "__main__": model = modernBERT("answerdotai/ModernBERT-base") texts = ["Potato's no name for a dog"] text_inputs = {"input_ids": model.tokenizer(texts)} output = model(text_inputs) print(output[0].shape)