Upload NomicBertForPreTraining
Browse files- config.json +1 -1
- configuration_hf_nomic_bert.py +51 -0
- modeling_hf_nomic_bert.py +249 -4
config.json
CHANGED
@@ -5,7 +5,7 @@
|
|
5 |
],
|
6 |
"attn_pdrop": 0.0,
|
7 |
"auto_map": {
|
8 |
-
"AutoConfig": "
|
9 |
"AutoModelForMaskedLM": "modeling_hf_nomic_bert.NomicBertForPreTraining"
|
10 |
},
|
11 |
"bos_token_id": null,
|
|
|
5 |
],
|
6 |
"attn_pdrop": 0.0,
|
7 |
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_hf_nomic_bert.NomicBertConfig",
|
9 |
"AutoModelForMaskedLM": "modeling_hf_nomic_bert.NomicBertForPreTraining"
|
10 |
},
|
11 |
"bos_token_id": null,
|
configuration_hf_nomic_bert.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Config
|
2 |
+
|
3 |
+
|
4 |
+
class NomicBertConfig(GPT2Config):
|
5 |
+
model_type = "nomic_bert"
|
6 |
+
|
7 |
+
def __init__(self,
|
8 |
+
prenorm=False,
|
9 |
+
parallel_block=False,
|
10 |
+
parallel_block_tied_norm=False,
|
11 |
+
rotary_emb_fraction=0.0,
|
12 |
+
fused_dropout_add_ln=False,
|
13 |
+
fused_bias_fc=False,
|
14 |
+
use_flash_attn=False,
|
15 |
+
use_xentropy=False,
|
16 |
+
qkv_proj_bias=True,
|
17 |
+
rotary_emb_base=1000,
|
18 |
+
rotary_emb_scale_base=None,
|
19 |
+
rotary_emb_interleaved=False,
|
20 |
+
mlp_fc1_bias=True,
|
21 |
+
mlp_fc2_bias=True,
|
22 |
+
use_rms_norm=False,
|
23 |
+
causal=False,
|
24 |
+
type_vocab_size=2,
|
25 |
+
dense_seq_output=True,
|
26 |
+
pad_vocab_size_multiple=1,
|
27 |
+
tie_word_embeddings=True,
|
28 |
+
**kwargs,
|
29 |
+
):
|
30 |
+
self.prenorm = prenorm
|
31 |
+
self.parallel_block = parallel_block
|
32 |
+
self.parallel_block_tied_norm = parallel_block_tied_norm
|
33 |
+
self.rotary_emb_fraction = rotary_emb_fraction
|
34 |
+
self.tie_word_embeddings = tie_word_embeddings
|
35 |
+
self.fused_dropout_add_ln = fused_dropout_add_ln
|
36 |
+
self.fused_bias_fc = fused_bias_fc
|
37 |
+
self.use_flash_attn = use_flash_attn
|
38 |
+
self.use_xentropy = use_xentropy
|
39 |
+
self.qkv_proj_bias = qkv_proj_bias
|
40 |
+
self.rotary_emb_base = rotary_emb_base
|
41 |
+
self.rotary_emb_scale_base = rotary_emb_scale_base
|
42 |
+
self.rotary_emb_interleaved = rotary_emb_interleaved
|
43 |
+
self.mlp_fc1_bias = mlp_fc1_bias
|
44 |
+
self.mlp_fc2_bias = mlp_fc2_bias
|
45 |
+
self.use_rms_norm = use_rms_norm
|
46 |
+
self.causal = causal
|
47 |
+
self.type_vocab_size = type_vocab_size
|
48 |
+
self.dense_seq_output = dense_seq_output
|
49 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
50 |
+
|
51 |
+
super().__init__(**kwargs)
|
modeling_hf_nomic_bert.py
CHANGED
@@ -4,7 +4,6 @@
|
|
4 |
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
5 |
|
6 |
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
7 |
-
|
8 |
import os
|
9 |
import logging
|
10 |
from functools import partial
|
@@ -21,12 +20,258 @@ from transformers.models.bert.modeling_bert import (
|
|
21 |
SequenceClassifierOutput
|
22 |
)
|
23 |
|
24 |
-
|
25 |
-
from
|
26 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
logger = logging.getLogger(__name__)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
class NomicBertPreTrainedModel(PreTrainedModel):
|
32 |
"""An abstract class to handle weights initialization and
|
|
|
4 |
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
5 |
|
6 |
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
|
|
7 |
import os
|
8 |
import logging
|
9 |
from functools import partial
|
|
|
20 |
SequenceClassifierOutput
|
21 |
)
|
22 |
|
23 |
+
import re
|
24 |
+
from collections import OrderedDict
|
25 |
+
from safetensors.torch import load_file as safe_load_file
|
26 |
+
from transformers.utils import (
|
27 |
+
SAFE_WEIGHTS_INDEX_NAME,
|
28 |
+
SAFE_WEIGHTS_NAME,
|
29 |
+
WEIGHTS_INDEX_NAME,
|
30 |
+
WEIGHTS_NAME,
|
31 |
+
)
|
32 |
+
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
33 |
+
|
34 |
+
|
35 |
+
from .configuration_hf_nomic_bert import NomicBertConfig
|
36 |
|
37 |
logger = logging.getLogger(__name__)
|
38 |
|
39 |
+
# adapted from flash attention, added safe serialization option for hf models
|
40 |
+
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
|
41 |
+
# If not fp32, then we don't want to load directly to the GPU
|
42 |
+
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
|
43 |
+
is_sharded = False
|
44 |
+
load_safe = False
|
45 |
+
resolved_archive_file = None
|
46 |
+
|
47 |
+
weights_path = os.path.join(model_name, WEIGHTS_NAME)
|
48 |
+
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
|
49 |
+
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
|
50 |
+
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
|
51 |
+
|
52 |
+
if os.path.isfile(weights_path):
|
53 |
+
resolved_archive_file = cached_file(
|
54 |
+
model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False
|
55 |
+
)
|
56 |
+
elif os.path.isfile(weights_index_path):
|
57 |
+
resolved_archive_file = cached_file(
|
58 |
+
model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
59 |
+
)
|
60 |
+
is_sharded = True
|
61 |
+
elif os.path.isfile(safe_weights_path):
|
62 |
+
resolved_archive_file = cached_file(
|
63 |
+
model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False
|
64 |
+
)
|
65 |
+
load_safe = True
|
66 |
+
elif os.path.isfile(safe_weights_index_path):
|
67 |
+
resolved_archive_file = cached_file(
|
68 |
+
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
69 |
+
)
|
70 |
+
is_sharded = True
|
71 |
+
load_safe = True
|
72 |
+
else: # Try loading from HF hub instead of from local files
|
73 |
+
weight_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
|
74 |
+
resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False)
|
75 |
+
if resolved_archive_file is None:
|
76 |
+
weight_index = WEIGHTS_INDEX_NAME if not safe_serialization else SAFE_WEIGHTS_INDEX_NAME
|
77 |
+
resolved_archive_file = cached_file(model_name, weight_index,
|
78 |
+
_raise_exceptions_for_missing_entries=False)
|
79 |
+
if resolved_archive_file is not None:
|
80 |
+
is_sharded = True
|
81 |
+
|
82 |
+
load_safe = safe_serialization
|
83 |
+
|
84 |
+
if resolved_archive_file is None:
|
85 |
+
raise EnvironmentError(f"Model name {model_name} was not found.")
|
86 |
+
|
87 |
+
if load_safe:
|
88 |
+
loader = partial(safe_load_file, device=mapped_device)
|
89 |
+
else:
|
90 |
+
loader = partial(torch.load, map_location=mapped_device)
|
91 |
+
|
92 |
+
if is_sharded:
|
93 |
+
# resolved_archive_file becomes a list of files that point to the different
|
94 |
+
# checkpoint shards in this case.
|
95 |
+
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
|
96 |
+
model_name, resolved_archive_file
|
97 |
+
)
|
98 |
+
state_dict = {}
|
99 |
+
for sharded_file in resolved_archive_file:
|
100 |
+
state_dict.update(loader(sharded_file))
|
101 |
+
else:
|
102 |
+
state_dict = loader(resolved_archive_file)
|
103 |
+
# Convert dtype before moving to GPU to save memory
|
104 |
+
if dtype is not None:
|
105 |
+
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
|
106 |
+
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
|
107 |
+
return state_dict
|
108 |
+
|
109 |
+
|
110 |
+
def filter_shapes(state_dict, model):
|
111 |
+
"""
|
112 |
+
Filters the state dict to match the current model shape.
|
113 |
+
"""
|
114 |
+
filtered_state_dict = {}
|
115 |
+
for key, value in state_dict.items():
|
116 |
+
if key in model.state_dict():
|
117 |
+
if value.shape == model.state_dict()[key].shape:
|
118 |
+
filtered_state_dict[key] = value
|
119 |
+
return filtered_state_dict
|
120 |
+
|
121 |
+
|
122 |
+
def remap_bert_state_dict(state_dict, config, remove_bert=False, remove_cls_weights=False, add_pooling_layer=False):
|
123 |
+
"""
|
124 |
+
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
125 |
+
"""
|
126 |
+
def add_bert_prefix(key):
|
127 |
+
# prepend bert. to the key
|
128 |
+
if key.startswith("bert.") or key.startswith("cls."):
|
129 |
+
return key
|
130 |
+
return f"bert.{key}"
|
131 |
+
|
132 |
+
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
|
133 |
+
|
134 |
+
# LayerNorm
|
135 |
+
def key_mapping_ln_gamma_beta(key):
|
136 |
+
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
137 |
+
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
138 |
+
return key
|
139 |
+
|
140 |
+
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
|
141 |
+
|
142 |
+
# Layers
|
143 |
+
def key_mapping_layers(key):
|
144 |
+
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
|
145 |
+
|
146 |
+
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
147 |
+
|
148 |
+
# LayerNorm
|
149 |
+
def key_mapping_ln(key):
|
150 |
+
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
151 |
+
key = re.sub(
|
152 |
+
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
153 |
+
r"bert.encoder.layers.\1.norm1.\2",
|
154 |
+
key,
|
155 |
+
)
|
156 |
+
key = re.sub(
|
157 |
+
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
158 |
+
r"bert.encoder.layers.\1.norm2.\2",
|
159 |
+
key,
|
160 |
+
)
|
161 |
+
key = re.sub(
|
162 |
+
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
163 |
+
r"cls.predictions.transform.layer_norm.\1",
|
164 |
+
key,
|
165 |
+
)
|
166 |
+
return key
|
167 |
+
|
168 |
+
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
169 |
+
|
170 |
+
# MLP
|
171 |
+
def key_mapping_mlp(key):
|
172 |
+
key = re.sub(
|
173 |
+
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
174 |
+
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
175 |
+
key,
|
176 |
+
)
|
177 |
+
key = re.sub(
|
178 |
+
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
179 |
+
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
180 |
+
key,
|
181 |
+
)
|
182 |
+
return key
|
183 |
+
|
184 |
+
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
185 |
+
|
186 |
+
# Attention
|
187 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
188 |
+
for d in range(config.num_hidden_layers):
|
189 |
+
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
|
190 |
+
continue
|
191 |
+
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
192 |
+
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
193 |
+
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
194 |
+
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
195 |
+
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
196 |
+
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
197 |
+
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
198 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat(
|
199 |
+
[Wq, Wk, Wv], dim=0
|
200 |
+
)
|
201 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
202 |
+
else:
|
203 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
|
204 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
|
205 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
|
206 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
|
207 |
+
|
208 |
+
def key_mapping_attn(key):
|
209 |
+
return re.sub(
|
210 |
+
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
211 |
+
r"bert.encoder.layers.\1.attn.out_proj.\2",
|
212 |
+
key,
|
213 |
+
)
|
214 |
+
|
215 |
+
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
216 |
+
|
217 |
+
def key_mapping_decoder_bias(key):
|
218 |
+
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
219 |
+
|
220 |
+
|
221 |
+
# remove nsp weights, we don't use
|
222 |
+
state_dict.pop("cls.seq_relationship.weight", None)
|
223 |
+
state_dict.pop("cls.seq_relationship.bias", None)
|
224 |
+
state_dict.pop("bert.embeddings.position_ids", None)
|
225 |
+
|
226 |
+
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
|
227 |
+
|
228 |
+
# Word embedding
|
229 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
230 |
+
if pad_vocab_size_multiple > 1:
|
231 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
232 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
233 |
+
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
234 |
+
)
|
235 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
236 |
+
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
237 |
+
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
238 |
+
)
|
239 |
+
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
240 |
+
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
241 |
+
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
242 |
+
if "cls.predictions.decoder.bias" in state_dict:
|
243 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
244 |
+
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
245 |
+
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
246 |
+
)
|
247 |
+
|
248 |
+
if add_pooling_layer is False:
|
249 |
+
pooler_weights = ["bert.pooler.dense.weight",
|
250 |
+
"bert.pooler.dense.bias",
|
251 |
+
]
|
252 |
+
for key in pooler_weights:
|
253 |
+
state_dict.pop(key, None)
|
254 |
+
|
255 |
+
if remove_cls_weights:
|
256 |
+
cls_weights = ["cls.predictions.decoder.bias",
|
257 |
+
"cls.predictions.transform.dense.weight",
|
258 |
+
"cls.predictions.transform.dense.bias",
|
259 |
+
"cls.predictions.transform.layer_norm.weight",
|
260 |
+
"cls.predictions.transform.layer_norm.bias",
|
261 |
+
"cls.predictions.decoder.weight"]
|
262 |
+
for weight in cls_weights:
|
263 |
+
state_dict.pop(weight, None)
|
264 |
+
|
265 |
+
if remove_bert:
|
266 |
+
def remove_bert_prefix(key):
|
267 |
+
key = re.sub(r"^bert.", "", key)
|
268 |
+
return key
|
269 |
+
|
270 |
+
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
|
271 |
+
|
272 |
+
|
273 |
+
return state_dict
|
274 |
+
|
275 |
|
276 |
class NomicBertPreTrainedModel(PreTrainedModel):
|
277 |
"""An abstract class to handle weights initialization and
|