|
|
|
|
|
|
|
|
|
|
|
import logging |
|
|
|
|
|
import os |
|
import re |
|
from collections import OrderedDict |
|
from functools import partial |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from safetensors.torch import load_file as safe_load_file |
|
from transformers import GPT2Config, PreTrainedModel |
|
from transformers.models.bert.modeling_bert import ( |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
MaskedLMOutput, |
|
SequenceClassifierOutput, |
|
) |
|
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME |
|
from transformers.utils.hub import cached_file, get_checkpoint_shard_files |
|
|
|
from .configuration_hf_nomic_bert import NomicBertConfig |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None): |
|
|
|
mapped_device = "cpu" if dtype not in [torch.float32, None] else device |
|
is_sharded = False |
|
load_safe = False |
|
resolved_archive_file = None |
|
|
|
weights_path = os.path.join(model_name, WEIGHTS_NAME) |
|
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME) |
|
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME) |
|
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME) |
|
|
|
if os.path.isfile(weights_path): |
|
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False) |
|
elif os.path.isfile(weights_index_path): |
|
resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False) |
|
is_sharded = True |
|
elif os.path.isfile(safe_weights_path): |
|
resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False) |
|
load_safe = True |
|
elif os.path.isfile(safe_weights_index_path): |
|
resolved_archive_file = cached_file( |
|
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False |
|
) |
|
is_sharded = True |
|
load_safe = True |
|
else: |
|
weight_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME |
|
resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False) |
|
if resolved_archive_file is None: |
|
weight_index = WEIGHTS_INDEX_NAME if not safe_serialization else SAFE_WEIGHTS_INDEX_NAME |
|
resolved_archive_file = cached_file(model_name, weight_index, _raise_exceptions_for_missing_entries=False) |
|
if resolved_archive_file is not None: |
|
is_sharded = True |
|
|
|
load_safe = safe_serialization |
|
|
|
if resolved_archive_file is None: |
|
raise EnvironmentError(f"Model name {model_name} was not found.") |
|
|
|
if load_safe: |
|
loader = partial(safe_load_file, device=mapped_device) |
|
else: |
|
loader = partial(torch.load, map_location=mapped_device) |
|
|
|
if is_sharded: |
|
|
|
|
|
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file) |
|
state_dict = {} |
|
for sharded_file in resolved_archive_file: |
|
state_dict.update(loader(sharded_file)) |
|
else: |
|
state_dict = loader(resolved_archive_file) |
|
|
|
if dtype is not None: |
|
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()} |
|
state_dict = {k: v.to(device=device) for k, v in state_dict.items()} |
|
return state_dict |
|
|
|
|
|
def filter_shapes(state_dict, model): |
|
""" |
|
Filters the state dict to match the current model shape. |
|
""" |
|
filtered_state_dict = {} |
|
for key, value in state_dict.items(): |
|
if key in model.state_dict(): |
|
if value.shape == model.state_dict()[key].shape: |
|
filtered_state_dict[key] = value |
|
return filtered_state_dict |
|
|
|
|
|
def remap_bert_state_dict(state_dict, config, remove_bert=False, remove_cls_weights=False, add_pooling_layer=False): |
|
""" |
|
Map the state_dict of a Huggingface BERT model to be flash_attn compatible. |
|
""" |
|
|
|
def add_bert_prefix(key): |
|
|
|
if key.startswith("bert.") or key.startswith("cls."): |
|
return key |
|
return f"bert.{key}" |
|
|
|
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
def key_mapping_ln_gamma_beta(key): |
|
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key) |
|
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key) |
|
return key |
|
|
|
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
def key_mapping_layers(key): |
|
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key) |
|
|
|
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
def key_mapping_ln(key): |
|
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key) |
|
key = re.sub( |
|
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)", |
|
r"bert.encoder.layers.\1.norm1.\2", |
|
key, |
|
) |
|
key = re.sub( |
|
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)", |
|
r"bert.encoder.layers.\1.norm2.\2", |
|
key, |
|
) |
|
key = re.sub( |
|
r"^cls.predictions.transform.LayerNorm.(weight|bias)", |
|
r"cls.predictions.transform.layer_norm.\1", |
|
key, |
|
) |
|
return key |
|
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
def key_mapping_mlp(key): |
|
key = re.sub( |
|
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)", |
|
r"bert.encoder.layers.\1.mlp.fc1.\2", |
|
key, |
|
) |
|
key = re.sub( |
|
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)", |
|
r"bert.encoder.layers.\1.mlp.fc2.\2", |
|
key, |
|
) |
|
return key |
|
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
last_layer_subset = getattr(config, "last_layer_subset", False) |
|
for d in range(config.num_hidden_layers): |
|
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict: |
|
continue |
|
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight") |
|
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight") |
|
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight") |
|
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias") |
|
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias") |
|
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias") |
|
if not (last_layer_subset and d == config.num_hidden_layers - 1): |
|
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0) |
|
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0) |
|
else: |
|
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq |
|
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0) |
|
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq |
|
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0) |
|
|
|
def key_mapping_attn(key): |
|
return re.sub( |
|
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)", |
|
r"bert.encoder.layers.\1.attn.out_proj.\2", |
|
key, |
|
) |
|
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) |
|
|
|
def key_mapping_decoder_bias(key): |
|
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key) |
|
|
|
|
|
state_dict.pop("cls.seq_relationship.weight", None) |
|
state_dict.pop("cls.seq_relationship.bias", None) |
|
state_dict.pop("bert.embeddings.position_ids", None) |
|
|
|
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items()) |
|
|
|
if remove_cls_weights: |
|
cls_weights = [ |
|
"cls.predictions.decoder.bias", |
|
"cls.predictions.transform.dense.weight", |
|
"cls.predictions.transform.dense.bias", |
|
"cls.predictions.transform.layer_norm.weight", |
|
"cls.predictions.transform.layer_norm.bias", |
|
"cls.predictions.decoder.weight", |
|
] |
|
for weight in cls_weights: |
|
state_dict.pop(weight, None) |
|
|
|
|
|
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) |
|
if pad_vocab_size_multiple > 1: |
|
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"] |
|
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad( |
|
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) |
|
) |
|
if not remove_cls_weights: |
|
decoder_weight = state_dict["cls.predictions.decoder.weight"] |
|
state_dict["cls.predictions.decoder.weight"] = F.pad( |
|
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) |
|
) |
|
|
|
|
|
|
|
if "cls.predictions.decoder.bias" in state_dict: |
|
decoder_bias = state_dict["cls.predictions.decoder.bias"] |
|
state_dict["cls.predictions.decoder.bias"] = F.pad( |
|
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 |
|
) |
|
|
|
if add_pooling_layer is False: |
|
pooler_weights = [ |
|
"bert.pooler.dense.weight", |
|
"bert.pooler.dense.bias", |
|
] |
|
for key in pooler_weights: |
|
state_dict.pop(key, None) |
|
|
|
if remove_bert: |
|
|
|
def remove_bert_prefix(key): |
|
key = re.sub(r"^bert.", "", key) |
|
return key |
|
|
|
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items()) |
|
|
|
return state_dict |
|
|
|
|
|
class NomicBertPreTrainedModel(PreTrainedModel): |
|
"""An abstract class to handle weights initialization and |
|
a simple interface for dowloading and loading pretrained models. |
|
""" |
|
|
|
config_class = NomicBertConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Block"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def __init__(self, config, *inputs, **kwargs): |
|
super().__init__(config) |
|
if not isinstance(config, GPT2Config): |
|
raise ValueError( |
|
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. " |
|
"To create a model from a Google pretrained model use " |
|
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( |
|
self.__class__.__name__, self.__class__.__name__ |
|
) |
|
) |
|
self.config = config |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_name, config=None, *inputs, **kwargs): |
|
""" |
|
Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict. |
|
Download and cache the pre-trained model file if needed. |
|
|
|
Params: |
|
pretrained_model_name_or_path: either: |
|
- a path or url to a pretrained model archive containing: |
|
. `bert_config.json` a configuration file for the model |
|
. `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance |
|
- a path or url to a pretrained model archive containing: |
|
. `bert_config.json` a configuration file for the model |
|
. `model.chkpt` a TensorFlow checkpoint |
|
*inputs, **kwargs: additional input for the specific NomicBert class |
|
(ex: num_labels for NomicBertForSequenceClassification) |
|
""" |
|
|
|
if config is None: |
|
config = cls.config_class.from_pretrained(model_name) |
|
remove_cls = cls != NomicBertForPreTraining |
|
remove_bert_prefix = cls != NomicBertForPreTraining |
|
ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False) |
|
num_labels = kwargs.pop("num_labels", None) |
|
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None) |
|
if rotary_scaling_factor: |
|
config.rotary_scaling_factor = rotary_scaling_factor |
|
|
|
if config.n_positions <= 0 and config.rotary_emb_fraction > 0: |
|
config.n_positions = 2048 |
|
if num_labels: |
|
config.num_labels = num_labels |
|
|
|
if "add_pooling_layer" in kwargs: |
|
model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer")) |
|
else: |
|
if cls == NomicBertModel: |
|
model = cls(config, *inputs, add_pooling_layer=False) |
|
else: |
|
model = cls(config, *inputs) |
|
|
|
|
|
|
|
if os.path.exists(model_name): |
|
model_path = f"{model_name}/pytorch_model.bin" |
|
if os.path.exists(model_path): |
|
state_dict = torch.load(f"{model_name}/pytorch_model.bin") |
|
else: |
|
model_path = f"{model_name}/model.safetensors" |
|
if not os.path.exists(model_path): |
|
raise ValueError(f"Model path {model_path} not found") |
|
state_dict = safe_load_file(model_path) |
|
|
|
if ignore_mismatched_shapes: |
|
state_dict = filter_shapes(state_dict, model) |
|
load_return = model.load_state_dict(state_dict, strict=False) |
|
else: |
|
|
|
state_dict = state_dict_from_pretrained(model_name, safe_serialization=kwargs.get("safe_serialization", False)) |
|
state_dict = remap_bert_state_dict( |
|
state_dict, |
|
config, |
|
remove_bert=remove_bert_prefix, |
|
remove_cls_weights=remove_cls, |
|
add_pooling_layer=getattr(config, "add_pooling_layer", False), |
|
) |
|
if ignore_mismatched_shapes: |
|
state_dict = filter_shapes(state_dict, model) |
|
|
|
load_return = model.load_state_dict(state_dict, strict=True) |
|
logger.warning(load_return) |
|
return model |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, NomicBertEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
|
|
def _init_weights(module, initializer_range=0.02): |
|
if isinstance(module, nn.Linear): |
|
nn.init.normal_(module.weight, std=initializer_range) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
nn.init.normal_(module.weight, std=initializer_range) |
|
if module.padding_idx is not None: |
|
nn.init.zeros_(module.weight[module.padding_idx]) |
|
|
|
|
|
class NomicBertEmbeddings(nn.Module): |
|
def __init__(self, config): |
|
""" |
|
If max_position_embeddings <= 0, there's no position embeddings |
|
If type_vocab_size <= 0, there's no token type embeddings |
|
""" |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0 |
|
self.type_vocab_size = config.type_vocab_size |
|
if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0: |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, |
|
config.hidden_size, |
|
) |
|
if self.type_vocab_size > 0: |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
def forward(self, input_ids, position_ids=None, token_type_ids=None): |
|
""" |
|
input_ids: (batch, seqlen) |
|
position_ids: (batch, seqlen) |
|
token_type_ids: (batch, seqlen) |
|
""" |
|
batch_size, seqlen = input_ids.shape |
|
embeddings = self.word_embeddings(input_ids) |
|
|
|
if self.type_vocab_size > 0: |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
embeddings = embeddings + token_type_embeddings |
|
|
|
if self.max_position_embeddings > 0: |
|
if position_ids is None: |
|
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = embeddings + position_embeddings |
|
return embeddings |
|
|
|
|
|
class NomicBertMLP(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
activation=F.gelu, |
|
bias1=True, |
|
bias2=True, |
|
return_residual=False, |
|
fused_bias_fc=False, |
|
): |
|
super().__init__() |
|
out_features = out_features if out_features is not None else in_features |
|
hidden_features = hidden_features if hidden_features is not None else in_features * 4 |
|
self.return_residual = return_residual |
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1) |
|
approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" |
|
self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2) |
|
|
|
def forward(self, x): |
|
y = self.fc1(x) |
|
y = self.activation(y) |
|
y = self.fc2(y) |
|
return y if not self.return_residual else (y, x) |
|
|
|
|
|
class NomciBertGatedMLP(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
activation=F.sigmoid, |
|
bias1=True, |
|
bias2=True, |
|
multiple_of=256, |
|
return_residual=False, |
|
fused_bias_fc=True, |
|
device=None, |
|
dtype=None, |
|
): |
|
super().__init__() |
|
out_features = out_features if out_features is not None else in_features |
|
hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3) |
|
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of |
|
self.return_residual = return_residual |
|
|
|
self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1) |
|
self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1) |
|
self.activation = activation |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2) |
|
|
|
def forward(self, x): |
|
y = self.fc11(x) |
|
gate = self.fc12(x) |
|
if self.activation == F.sigmoid: |
|
y = F.glu(torch.cat([y, gate], dim=-1), dim=-1) |
|
else: |
|
y = y * self.activation(gate) |
|
y = self.fc2(y) |
|
return y if not self.return_residual else (y, x) |
|
|
|
|
|
def rotate_half(x, interleaved=False): |
|
if not interleaved: |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
else: |
|
x1, x2 = x[..., ::2], x[..., 1::2] |
|
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2) |
|
|
|
|
|
def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False): |
|
""" |
|
x: (batch_size, seqlen, nheads, headdim) |
|
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2) |
|
""" |
|
ro_dim = cos.shape[-1] * 2 |
|
assert ro_dim <= x.shape[-1] |
|
cos, sin = ( |
|
cos[offset : offset + x.shape[1]], |
|
sin[offset : offset + x.shape[1]], |
|
) |
|
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)") |
|
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)") |
|
return torch.cat( |
|
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]], |
|
dim=-1, |
|
) |
|
|
|
|
|
class NomicBertRotaryEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
base=10000.0, |
|
interleaved=False, |
|
scale_base=None, |
|
pos_idx_in_fp32=True, |
|
device=None, |
|
): |
|
""" |
|
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead |
|
of 1st half and 2nd half (GPT-NeoX style). |
|
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32, |
|
otherwise they might be in lower precision. |
|
This option was added because previously (before 2023-07-02), when we construct |
|
the position indices, we use the dtype of self.inv_freq. In most cases this would |
|
be fp32, but if the model is trained in pure bf16 (not mixed precision), then |
|
self.inv_freq would be bf16, and the position indices are also in bf16. |
|
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the |
|
embeddings for some positions will coincide. |
|
To maintain compatibility with models previously trained in pure bf16, |
|
we add this option. |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.base = float(base) |
|
self.pos_idx_in_fp32 = pos_idx_in_fp32 |
|
|
|
inv_freq = self._compute_inv_freq(device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.interleaved = interleaved |
|
self.scale_base = scale_base |
|
scale = ( |
|
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) |
|
if scale_base is not None |
|
else None |
|
) |
|
self.register_buffer("scale", scale, persistent=False) |
|
|
|
self._seq_len_cached = 0 |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
self._cos_k_cached = None |
|
self._sin_k_cached = None |
|
|
|
def _compute_inv_freq(self, device=None): |
|
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) |
|
|
|
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): |
|
|
|
|
|
|
|
if ( |
|
seqlen > self._seq_len_cached |
|
or self._cos_cached is None |
|
or self._cos_cached.device != device |
|
or self._cos_cached.dtype != dtype |
|
or (self.training and self._cos_cached.is_inference()) |
|
): |
|
self._seq_len_cached = seqlen |
|
|
|
|
|
|
|
if self.pos_idx_in_fp32: |
|
t = torch.arange(seqlen, device=device, dtype=torch.float32) |
|
|
|
|
|
|
|
|
|
if self.inv_freq.dtype != torch.float32: |
|
inv_freq = self._compute_inv_freq(device=device) |
|
else: |
|
inv_freq = self.inv_freq |
|
else: |
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) |
|
inv_freq = self.inv_freq |
|
|
|
|
|
freqs = torch.outer(t, inv_freq) |
|
self._cos_cached = torch.cos(freqs).to(dtype) |
|
self._sin_cached = torch.sin(freqs).to(dtype) |
|
|
|
def forward( |
|
self, |
|
qkv: torch.Tensor, |
|
kv: Optional[torch.Tensor] = None, |
|
seqlen_offset: Union[int, torch.Tensor] = 0, |
|
max_seqlen: Optional[int] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none, |
|
else it's just q of shape (batch, seqlen, nheads, headdim) |
|
kv: (batch, seqlen, 2, nheads, headdim) |
|
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount. |
|
Most commonly used in inference when we have KV cache. |
|
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one |
|
should pass in max_seqlen, which will update the cos / sin cache up to that length. |
|
Apply rotary embedding *inplace* to qkv and / or kv. |
|
""" |
|
seqlen = qkv.shape[1] |
|
if seqlen > self._seq_len_cached: |
|
self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype) |
|
elif max_seqlen is not None: |
|
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype) |
|
elif isinstance(seqlen_offset, int): |
|
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype) |
|
|
|
q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved) |
|
k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved) |
|
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2) |
|
|
|
|
|
class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding): |
|
def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs): |
|
super().__init__(**kwargs) |
|
self.rotary_scaling_factor = rotary_scaling_factor |
|
self.max_position_embeddings = max_position_embeddings |
|
|
|
def _compute_inv_freq(self, base=None, device=None): |
|
if base is None: |
|
base = self.base |
|
return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) |
|
|
|
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): |
|
|
|
|
|
|
|
if seqlen > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = self._compute_inv_freq(base=base, device=device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
if ( |
|
seqlen > self._seq_len_cached |
|
or self._cos_cached is None |
|
or self._cos_cached.device != device |
|
or self._cos_cached.dtype != dtype |
|
or (self.training and self._cos_cached.is_inference()) |
|
): |
|
self._seq_len_cached = seqlen |
|
|
|
|
|
|
|
if self.pos_idx_in_fp32: |
|
t = torch.arange(seqlen, device=device, dtype=torch.float32) |
|
|
|
|
|
|
|
|
|
if self.inv_freq.dtype != torch.float32: |
|
if seqlen > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
else: |
|
base = self.base |
|
inv_freq = self._compute_inv_freq(device=device, base=base) |
|
else: |
|
inv_freq = self.inv_freq |
|
else: |
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) |
|
inv_freq = self.inv_freq |
|
|
|
|
|
freqs = torch.outer(t, inv_freq) |
|
if self.scale is None: |
|
self._cos_cached = torch.cos(freqs).to(dtype) |
|
self._sin_cached = torch.sin(freqs).to(dtype) |
|
else: |
|
power = ( |
|
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2 |
|
) / self.scale_base |
|
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") |
|
|
|
self._cos_cached = (torch.cos(freqs) * scale).to(dtype) |
|
self._sin_cached = (torch.sin(freqs) * scale).to(dtype) |
|
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) |
|
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) |
|
|
|
|
|
class NomicBertAttention(nn.Module): |
|
"""Multi-head self-attention and cross-attention""" |
|
|
|
def __init__( |
|
self, |
|
config, |
|
) -> None: |
|
""" |
|
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads. |
|
return_residual: whether to return the input x along with the output. This is for |
|
performance reason: for post-norm architecture, returning the input allows us |
|
to fuse the backward of nn.Linear with the residual connection. |
|
""" |
|
super().__init__() |
|
self.embed_dim = config.n_embd |
|
self.use_flash_attn = config.use_flash_attn |
|
self.fused_bias_fc = config.fused_bias_fc |
|
|
|
self.num_heads = config.n_head |
|
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads |
|
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads" |
|
self.head_dim = self.embed_dim // self.num_heads |
|
|
|
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv) |
|
|
|
self.register_buffer( |
|
"norm_factor", |
|
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()), |
|
persistent=False, |
|
) |
|
|
|
self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction |
|
if self.rotary_emb_dim > 0: |
|
if config.rotary_scaling_factor: |
|
self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding( |
|
dim=self.rotary_emb_dim, |
|
base=config.rotary_emb_base, |
|
scale_base=config.rotary_emb_scale_base, |
|
interleaved=config.rotary_emb_interleaved, |
|
rotary_scaling_factor=config.rotary_scaling_factor, |
|
max_position_embeddings=config.max_trained_positions, |
|
) |
|
else: |
|
self.rotary_emb = NomicBertRotaryEmbedding( |
|
dim=self.rotary_emb_dim, |
|
base=config.rotary_emb_base, |
|
scale_base=config.rotary_emb_scale_base, |
|
interleaved=config.rotary_emb_interleaved, |
|
) |
|
|
|
|
|
self.rotary_head_dim = getattr(config, "rotary_head_dim", False) |
|
|
|
self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias) |
|
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias) |
|
self.causal = config.causal |
|
self.drop = nn.Dropout(config.attn_pdrop) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
is_padded_inputs: Optional[bool] = True, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
max_seq_len: Optional[int] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
has_layer_past = past_key_value is not None |
|
|
|
if has_layer_past: |
|
past_key_value = past_key_value[0] |
|
past_len = past_key_value[1] |
|
else: |
|
past_len = 0 |
|
|
|
qkv = self.Wqkv(hidden_states) |
|
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim) |
|
|
|
past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None |
|
|
|
if self.rotary_emb_dim > 0: |
|
if self.rotary_head_dim: |
|
qkv = rearrange(qkv, "b s three h d -> b h three s d") |
|
qkv = self.rotary_emb(qkv, seqlen_offset=past_len) |
|
|
|
if self.rotary_head_dim: |
|
qkv = rearrange(qkv, "b h three s d -> b s three h d") |
|
|
|
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2] |
|
|
|
query = query.permute(0, 2, 1, 3) |
|
key = key.permute(0, 2, 1, 3) |
|
value = value.permute(0, 2, 1, 3) |
|
|
|
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor |
|
if attention_mask is not None: |
|
attention_scores = attention_scores + attention_mask |
|
|
|
attentions_probs = F.softmax(attention_scores, dim=-1) |
|
attentions_probs = self.drop(attentions_probs) |
|
|
|
attn_output = torch.matmul(attentions_probs, value) |
|
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)") |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output |
|
|
|
|
|
class NomicBertBlock(NomicBertPreTrainedModel): |
|
def __init__( |
|
self, |
|
config, |
|
): |
|
super().__init__(config=config) |
|
self.prenorm = config.prenorm |
|
self.fused_dropout_add_ln = config.fused_dropout_add_ln |
|
|
|
self.attn = NomicBertAttention(config) |
|
activation = ( |
|
F.sigmoid |
|
if config.activation_function == "glu" |
|
else (F.silu if config.activation_function == "swiglu" else F.gelu) |
|
) |
|
if config.activation_function in ["glu", "swiglu", "geglu"]: |
|
self.mlp = NomciBertGatedMLP( |
|
config.n_embd, |
|
hidden_features=config.n_inner, |
|
bias1=config.mlp_fc1_bias, |
|
bias2=config.mlp_fc2_bias, |
|
activation=activation, |
|
fused_bias_fc=config.fused_bias_fc, |
|
) |
|
else: |
|
self.mlp = NomicBertMLP( |
|
config.n_embd, |
|
hidden_features=config.n_inner, |
|
bias1=config.mlp_fc1_bias, |
|
bias2=config.mlp_fc2_bias, |
|
activation=activation, |
|
fused_bias_fc=config.fused_bias_fc, |
|
) |
|
|
|
self.dropout1 = nn.Dropout(config.resid_pdrop) |
|
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.dropout2 = nn.Dropout(config.resid_pdrop) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
hidden_states2: torch.Tensor, |
|
residual: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
is_padded_inputs: Optional[bool] = True, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
max_seq_len: Optional[int] = None, |
|
): |
|
r"""Pass the input through the encoder layer. |
|
|
|
Args: |
|
hidden_states: the sequence to the encoder layer (required). |
|
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual)) |
|
mixer_subset: for cross-attention only. If not None, will take a subset of x |
|
before applying the query projection. Useful for e.g., ViT where we only care |
|
about the CLS token in the last layer. |
|
""" |
|
if self.prenorm: |
|
dropped = self.dropout1(hidden_states) |
|
residual = (dropped + residual) if residual is not None else dropped |
|
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype)) |
|
hidden_states = self.attn( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
is_padded_inputs=is_padded_inputs, |
|
cu_seqlens=cu_seqlens, |
|
max_seq_len=max_seq_len, |
|
) |
|
|
|
dropped = self.dropout2(hidden_states) |
|
residual = (dropped + residual) if residual is not None else dropped |
|
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype)) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
return hidden_states, None, residual |
|
else: |
|
assert residual is None |
|
attn_outputs = self.attn( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
is_padded_inputs=is_padded_inputs, |
|
cu_seqlens=cu_seqlens, |
|
max_seq_len=max_seq_len, |
|
) |
|
hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype)) |
|
mlp_out = self.mlp(hidden_states) |
|
|
|
hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype)) |
|
return hidden_states, None, None |
|
|
|
|
|
class NomicBertEncoder(nn.Module): |
|
def __init__(self, config: GPT2Config): |
|
super().__init__() |
|
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)]) |
|
self.gradient_checkpointing = False |
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
is_padded_inputs: Optional[bool] = True, |
|
): |
|
"""If subset_mask is not None, we only want output for the subset of the sequence. |
|
This means that we only compute the last layer output for these tokens. |
|
subset_mask: (batch, seqlen), dtype=torch.bool |
|
""" |
|
hidden_states2 = None |
|
residual = None |
|
|
|
for _, layer in enumerate(self.layers): |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer), |
|
hidden_states, |
|
hidden_states2, |
|
residual, |
|
attention_mask, |
|
None, |
|
None, |
|
is_padded_inputs, |
|
|
|
|
|
|
|
use_reentrant=False, |
|
) |
|
|
|
else: |
|
hidden_states, hidden_states2, residual = layer( |
|
hidden_states, |
|
hidden_states2, |
|
residual, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
is_padded_inputs, |
|
output_attentions, |
|
use_cache, |
|
) |
|
return hidden_states |
|
|
|
|
|
class NomicBertPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.n_embd, config.n_embd) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states, pool=True): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] if pool else hidden_states |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class NomicBertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias) |
|
approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" |
|
if config.activation_function == "swiglu": |
|
self.transform_act_fn = F.silu |
|
else: |
|
self.transform_act_fn = nn.GELU(approximate=approximate) |
|
|
|
self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class NomicBertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.transform = NomicBertPredictionHeadTransform(config) |
|
|
|
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class NomicBertPreTrainingHeads(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = NomicBertLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
class NomicBertModel(NomicBertPreTrainedModel): |
|
def __init__(self, config: GPT2Config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) |
|
if config.vocab_size % self.pad_vocab_size_multiple != 0: |
|
config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple) |
|
|
|
assert config.activation_function in [ |
|
"gelu", |
|
"gelu_new", |
|
"gelu_fast", |
|
"gelu_pytorch_tanh", |
|
"swiglu", |
|
"geglu", |
|
"glu", |
|
] |
|
|
|
self.embeddings = NomicBertEmbeddings(config) |
|
self.emb_drop = nn.Dropout(config.resid_pdrop) |
|
self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.encoder = NomicBertEncoder(config) |
|
self.pooler = NomicBertPooler(config) if add_pooling_layer else None |
|
|
|
self.apply(partial(_init_weights, initializer_range=config.initializer_range)) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
return_dict=None, |
|
): |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros_like(input_ids) |
|
hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) |
|
hidden_states = self.emb_ln(hidden_states) |
|
hidden_states = self.emb_drop(hidden_states) |
|
|
|
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape) |
|
sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict) |
|
|
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
) |
|
|
|
|
|
class NomicBertForPreTraining(NomicBertPreTrainedModel): |
|
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"] |
|
|
|
def __init__(self, config: GPT2Config): |
|
super().__init__(config) |
|
|
|
self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False)) |
|
self.cls = NomicBertPreTrainingHeads(config) |
|
self.mlm_loss = nn.CrossEntropyLoss() |
|
|
|
|
|
self.apply(partial(_init_weights, initializer_range=config.initializer_range)) |
|
self.tie_weights() |
|
|
|
def tie_weights(self): |
|
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
labels=None, |
|
): |
|
""" |
|
If labels are provided, they must be -100 for masked out tokens (as specified in the attention |
|
mask). |
|
Outputs: |
|
if `labels` and `next_sentence_label` are not `None`: |
|
Outputs the total_loss which is the sum of the masked language modeling loss and the next |
|
sentence classification loss. |
|
if `labels` or `next_sentence_label` is `None`: |
|
Outputs a tuple comprising |
|
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and |
|
- the next sentence classification logits of shape [batch_size, 2]. |
|
|
|
""" |
|
outputs = self.bert( |
|
input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask.bool() if attention_mask is not None else None, |
|
) |
|
sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output |
|
|
|
prediction_scores = self.cls(sequence_output) |
|
|
|
total_loss = None |
|
if labels is not None: |
|
masked_lm_loss = self.mlm_loss( |
|
rearrange(prediction_scores, "... v -> (...) v"), |
|
rearrange(labels, "... -> (...)"), |
|
) |
|
total_loss = masked_lm_loss.float() |
|
|
|
return MaskedLMOutput( |
|
loss=total_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=None, |
|
) |
|
|
|
|
|
class NomicBertForSequenceClassification(NomicBertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.bert = NomicBertModel(config) |
|
classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.n_embd, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
outputs = self.bert( |
|
input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask.bool() if attention_mask is not None else None, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = nn.MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = nn.BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |