Upload folder using huggingface_hub
Browse files- config.json +24 -0
- convert_weight.py +72 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2 -0
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_residual_connection_post_layernorm": false,
|
3 |
+
"architectures": [
|
4 |
+
"BloomModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attention_softmax_in_fp32": true,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_dropout": 0.0,
|
11 |
+
"hidden_size": 4096,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"layer_norm_epsilon": 1e-05,
|
14 |
+
"masked_softmax_fusion": true,
|
15 |
+
"model_type": "bloom",
|
16 |
+
"n_head": 32,
|
17 |
+
"n_layer": 32,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"slow_but_exact": false,
|
21 |
+
"transformers_version": "4.26.0.dev0",
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 32768
|
24 |
+
}
|
convert_weight.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
input_dir_path = "/scratch/project_462000086/norwegian_gpt/Megatron-DeepSpeed-fixed/checkpoints/global_step120000"
|
5 |
+
output_dir_path = "/scratch/project_462000086/norwegian_gpt/Megatron-DeepSpeed-fixed/hf_pilot_checkpoint_120k"
|
6 |
+
|
7 |
+
n_hidden = 4096
|
8 |
+
n_heads = 32
|
9 |
+
n_layers = 32
|
10 |
+
n_tp = 4
|
11 |
+
|
12 |
+
|
13 |
+
weights = {}
|
14 |
+
|
15 |
+
# embedding
|
16 |
+
embedding_weights = []
|
17 |
+
for i in range(n_tp):
|
18 |
+
path = f"{input_dir_path}/layer_01-model_0{i}-model_states.pt"
|
19 |
+
checkpoint = torch.load(path)
|
20 |
+
|
21 |
+
embedding_weights.append(checkpoint["word_embeddings.weight"].bfloat16())
|
22 |
+
|
23 |
+
weights[f"transformer.word_embeddings_layernorm.weight"] = checkpoint["word_embeddings.norm.weight"].bfloat16()
|
24 |
+
weights[f"transformer.word_embeddings_layernorm.bias"] = checkpoint["word_embeddings.norm.bias"].bfloat16()
|
25 |
+
|
26 |
+
weights[f"transformer.word_embeddings.weight"] = torch.cat(embedding_weights, dim=0)
|
27 |
+
weights[f"lm_head.weight"] = torch.cat(embedding_weights, dim=0)
|
28 |
+
del embedding_weights
|
29 |
+
|
30 |
+
|
31 |
+
# transformer layers
|
32 |
+
for layer in range(n_layers):
|
33 |
+
qkv_weights = []
|
34 |
+
qkv_biases = []
|
35 |
+
o_weights = []
|
36 |
+
up_weights = []
|
37 |
+
up_biases = []
|
38 |
+
down_weights = []
|
39 |
+
|
40 |
+
for i in range(n_tp):
|
41 |
+
path = f"{input_dir_path}/layer_{layer+3:02d}-model_0{i}-model_states.pt"
|
42 |
+
checkpoint = torch.load(path)
|
43 |
+
|
44 |
+
weights[f"transformer.h.{layer}.input_layernorm.weight"] = checkpoint["input_layernorm.weight"].bfloat16()
|
45 |
+
weights[f"transformer.h.{layer}.input_layernorm.bias"] = checkpoint["input_layernorm.bias"].bfloat16()
|
46 |
+
weights[f"transformer.h.{layer}.self_attention.dense.bias"] = checkpoint["self_attention.dense.bias"].bfloat16()
|
47 |
+
weights[f"transformer.h.{layer}.post_attention_layernorm.weight"] = checkpoint["post_attention_layernorm.weight"].bfloat16()
|
48 |
+
weights[f"transformer.h.{layer}.post_attention_layernorm.bias"] = checkpoint["post_attention_layernorm.bias"].bfloat16()
|
49 |
+
weights[f"transformer.h.{layer}.mlp.dense_4h_to_h.bias"] = checkpoint["mlp.dense_4h_to_h.bias"].bfloat16()
|
50 |
+
|
51 |
+
qkv_weights.append(checkpoint["self_attention.query_key_value.weight"].bfloat16())
|
52 |
+
qkv_biases.append(checkpoint["self_attention.query_key_value.bias"].bfloat16())
|
53 |
+
o_weights.append(checkpoint["self_attention.dense.weight"].bfloat16())
|
54 |
+
up_weights.append(checkpoint["mlp.dense_h_to_4h.weight"].bfloat16())
|
55 |
+
up_biases.append(checkpoint["mlp.dense_h_to_4h.bias"].bfloat16())
|
56 |
+
down_weights.append(checkpoint["mlp.dense_4h_to_h.weight"].bfloat16())
|
57 |
+
|
58 |
+
weights[f"transformer.h.{layer}.self_attention.query_key_value.weight"] = torch.cat(qkv_weights, dim=0)
|
59 |
+
weights[f"transformer.h.{layer}.self_attention.query_key_value.bias"] = torch.cat(qkv_biases, dim=0)
|
60 |
+
weights[f"transformer.h.{layer}.self_attention.dense.weight"] = torch.cat(o_weights, dim=1)
|
61 |
+
weights[f"transformer.h.{layer}.mlp.dense_h_to_4h.weight"] = torch.cat(up_weights, dim=0)
|
62 |
+
weights[f"transformer.h.{layer}.mlp.dense_h_to_4h.bias"] = torch.cat(up_biases, dim=0)
|
63 |
+
weights[f"transformer.h.{layer}.mlp.dense_4h_to_h.weight"] = torch.cat(down_weights, dim=1)
|
64 |
+
|
65 |
+
# output layer norm
|
66 |
+
path = f"{input_dir_path}/layer_36-model_00-model_states.pt"
|
67 |
+
checkpoint = torch.load(path)
|
68 |
+
|
69 |
+
weights[f"transformer.ln_f.bias"] = checkpoint["bias"].bfloat16()
|
70 |
+
weights[f"transformer.ln_f.weight"] = checkpoint["weight"].bfloat16()
|
71 |
+
|
72 |
+
torch.save(weights, f"{output_dir_path}/pytorch_model.bin")
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a7ec0e38e7550b6a3660412cba5f4b69a62c06ae54325265ed94123c0a58e7f
|
3 |
+
size 13425343241
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "</s>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "eos_token": "</s>", "bos_token": "<s>", "tokenizer_class": "PreTrainedTokenizerFast"}
|
2 |
+
|