File size: 13,846 Bytes
84a3172 6d969f3 84a3172 6d969f3 84a3172 6d969f3 84a3172 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code has been adapted from Mosaic ML and Huggingface and inherits the above lisence.
# The original code can be found here:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mpt/configuration_mpt.py
"""Extended Mind Mpt configuration"""
from typing import Optional, Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class ExtendedMptAttentionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ExtendedMptAttention`] class. It is used to instantiate
attention layers according to the specified arguments, defining the layers architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MPT
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward
compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
attn_type (`str`, *optional*, defaults to `"multihead_attention"`):
type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`.
attn_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for the attention layers.
attn_impl (`str`, *optional*, defaults to `"torch"`):
The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`.
clip_qkv (`float`, *optional*):
If not `None`, clip the queries, keys, and values in the attention layer to this value.
softmax_scale (`float`, *optional*, defaults to `None`):
If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to
`1/sqrt(hidden_size)`.
prefix_lm (`bool`, *optional*, defaults to `False`)):
Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument
which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another
bi-directionally. Tokens outside the prefix use causal attention.
qk_ln (`bool`, *optional*, defaults to `False`):
Whether to apply layer normalization to the queries and keys in the attention layer.
attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)):
Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train`
mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each
token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored.
alibi (`bool`, *optional*, defaults to `True`):
Whether or not to use the alibi bias instead of positional embedding.
alibi_bias_max (`int`, *optional*, defaults to 8):
The maximum value of the alibi bias.
#### Memory Configuration ####
topk (`int`, *optional*, defaults to `10`):
Number of external memories for each query token to retrieve and attend to.
memory_type (`string`, *optional*, defaults to `manual`):
Whether to store external memories manually or in a vector database.
memory_device (`string`, *optional*, defaults to `cpu`):
Specify device to store memory.
mask_by_sim (`bool`, *optional*, defaults to `True`):
Whether or not to mask retrieved memories by similarity.
sim_threshold (`float`, *optional*, defaults to `0.25`):
Threshold for masking retrieved memories.
tokenizer_all_special_ids (`list`, *optional*, defaults to `[0, 50278]`):
Ids for special tokens to remove from memories.
remove_special_tokens (`bool`, *optional*, defaults to `True`):
Remove memories that correspond to tokenizer special ids.
#### Memory Configuration ####
"""
def __init__(
self,
attn_type="multihead_attention",
attn_pdrop=0,
attn_impl="torch",
clip_qkv=None,
softmax_scale=None,
prefix_lm=False,
qk_ln=False,
attn_uses_sequence_id=False,
alibi=True,
alibi_bias_max=8,
topk=10,
memory_type="manual",
memory_device="cpu",
mask_by_sim=True,
sim_threshold=0.25,
tokenizer_all_special_ids=[0, 50278],
remove_special_ids=False,
use_external_mind_by_layer: list[bool] = [True for _ in range(32)],
**kwargs,
):
super().__init__(**kwargs)
self.attn_type = attn_type
self.attn_pdrop = attn_pdrop
self.attn_impl = attn_impl
self.clip_qkv = clip_qkv
self.softmax_scale = softmax_scale
self.prefix_lm = prefix_lm
self.attn_uses_sequence_id = attn_uses_sequence_id
self.alibi = alibi
self.qk_ln = qk_ln
self.alibi_bias_max = alibi_bias_max
self.topk = topk
self.memory_type = memory_type
self.memory_device = memory_device
self.mask_by_sim = mask_by_sim
self.sim_threshold = sim_threshold
self.tokenizer_all_special_ids = tokenizer_all_special_ids
self.remove_special_ids = remove_special_ids
self.use_external_mind_by_layer = use_external_mind_by_layer
if attn_type not in ["multihead_attention", "multiquery_attention"]:
raise ValueError(
f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}"
)
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, **kwargs
) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs
)
if config_dict.get("model_type") == "mpt":
config_dict = config_dict["attn_config"]
if (
"model_type" in config_dict
and hasattr(cls, "model_type")
and config_dict["model_type"] != cls.model_type
):
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ExtendedMptConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to the Mpt-7b architecture
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
d_model (`int`, *optional*, defaults to 2048):
Dimensionality of the embeddings and hidden states.
n_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
n_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
expansion_ratio (`int`, *optional*, defaults to 4):
The ratio of the up/down scale in the MLP.
max_seq_len (`int`, *optional*, defaults to 2048):
The maximum sequence length of the model.
vocab_size (`int`, *optional*, defaults to 50368):
Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by
the `inputs_ids` passed when calling [`MptModel`]. Check [this
discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the
`vocab_size` has been defined.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability applied to the attention output before combining with residual.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
emb_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the embedding layer.
learned_pos_emb (`bool`, *optional*, defaults to `False`):
Whether to use learned positional embeddings.
attn_config (`dict`, *optional*):
A dictionary used to configure the model's attention module.
init_device (`str`, *optional*):
The device to use for parameter initialization. Defined for backward compatibility
logit_scale (`float`, *optional*):
If not None, scale the logits by this value.
no_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in all linear layers.
verbose (`int`, *optional*, defaults to 0):
The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This
argument is deprecated.
embedding_fraction (`float`, *optional*, defaults to 1.0):
The fraction to scale the gradients of the embedding layer by.
norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`):
Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward
compatibility.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
#### Memory Configuration ####
use_external_mind (`bool`, *optional*, defaults to `True`):
Whether to attend to external memories.
use_external_mind_by_layer (`List[bool]`, *optional*, defaults to List[`True`, ..., `True`]):
Whether to attend to external memories, on each decoder layer.
#### Memory Configuration ####
Example:
```python
>>> from transformers import MptConfig, MptModel
>>> # Initializing a Mpt configuration
>>> configuration = MptConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = MptModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "extended-mpt"
attribute_map = {
"num_attention_heads": "n_heads",
"hidden_size": "d_model",
"num_hidden_layers": "n_layers",
}
def __init__(
self,
d_model: int = 4096,
n_heads: int = 32,
n_layers: int = 32,
expansion_ratio: int = 4,
max_seq_len_inference: int = 2048,
vocab_size: int = 50432,
resid_pdrop: float = 0.0,
layer_norm_epsilon: float = 1e-5,
emb_pdrop: float = 0.0,
learned_pos_emb: bool = True,
attn_config: ExtendedMptAttentionConfig = None,
init_device: str = "cpu",
logit_scale: Optional[Union[float, str]] = None,
no_bias: bool = True,
verbose: int = 0,
embedding_fraction: float = 1.0,
norm_type: str = "low_precision_layernorm",
use_cache: bool = False,
initializer_range=0.02,
use_external_mind: bool = True,
**kwargs,
):
if attn_config is None:
self.attn_config = ExtendedMptAttentionConfig(
use_external_mind_by_layer=[True for _ in range(n_layers)]
)
elif not isinstance(attn_config, ExtendedMptAttentionConfig):
self.attn_config = ExtendedMptAttentionConfig(**attn_config)
else:
self.attn_config = attn_config
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.expansion_ratio = expansion_ratio
self.max_seq_len = max_seq_len_inference
self.vocab_size = vocab_size
self.resid_pdrop = resid_pdrop
self.emb_pdrop = emb_pdrop
self.learned_pos_emb = learned_pos_emb
self.init_device = init_device
self.logit_scale = logit_scale
self.no_bias = no_bias
self.verbose = verbose
self.embedding_fraction = embedding_fraction
self.norm_type = norm_type
self.layer_norm_epsilon = layer_norm_epsilon
self.use_cache = use_cache
self.initializer_range = initializer_range
self.use_external_mind = use_external_mind
super().__init__(**kwargs)
|