File size: 52,568 Bytes
84a3172 85f9b88 84a3172 da97426 84a3172 6d969f3 84a3172 6d969f3 84a3172 6d969f3 84a3172 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 |
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code has been adapted from Mosaic ML and Huggingface and inherits the above lisence.
# The original code can be found here:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
# We annotate the edited code below with 'EM' comments to indicate where we have made changes.
"""PyTorch MPT model."""
import math
from typing import Optional, Tuple, Union
import faiss
import numpy as np
import torch
import torch.utils.checkpoint
from einops import rearrange
from torch import nn
from torch.linalg import vector_norm
from torch.nn import CrossEntropyLoss, LayerNorm
from torch.nn import functional as F
from transformers.file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration import ExtendedMptConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "mosaicml/mpt-7b"
_CONFIG_FOR_DOC = "MptConfig"
# Copied from transformers.models.bloom.modeling_bloom._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
"""
Make causal mask used for self-attention.
"""
batch_size, target_length = input_ids_shape
mask = torch.empty(
(target_length, target_length + past_key_values_length),
dtype=torch.bool,
device=device,
)
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
seq_ids = torch.arange(target_length, device=device)
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
if past_key_values_length > 0:
mask[:, :past_key_values_length] = False
expanded_mask = mask[None, None, :, :].expand(
batch_size, 1, target_length, target_length + past_key_values_length
)
return expanded_mask
# Copied from transformers.models.bloom.modeling_bloom._expand_mask
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
"""
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
"""
batch_size, src_length = mask.shape
tgt_length = tgt_length if tgt_length is not None else src_length
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
def build_mpt_alibi_tensor(
num_heads,
sequence_length,
sequence_length_with_past,
alibi_bias_max=8,
device=None,
for_ae=False,
topk=None,
):
r"""
Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
"""
if not for_ae:
alibi = torch.arange(
1 - sequence_length, 1, dtype=torch.int32, device=device
).view(1, 1, 1, sequence_length)
else: # EM: All memory tokens get same bias
alibi = (
torch.tensor(-sequence_length_with_past, dtype=torch.int32, device=device)
.repeat(sequence_length * topk)
.view(1, 1, 1, sequence_length * topk)
)
num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads))
base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.float32, device=device)
base = base * (alibi_bias_max / num_heads_power_of_2)
slopes = 1.0 / torch.pow(2, base)
slopes = slopes.view(1, num_heads, 1, 1)
if num_heads_power_of_2 != num_heads:
slopes = torch.concat([slopes[1::2], slopes[::2]])[:num_heads]
alibi = alibi * slopes
return alibi.squeeze(0)
class ExtendedMptAttention(nn.Module):
"""Multi-head self attention.
Using torch or triton attention implemetation enables user to also use additive bias.
"""
def __init__(self, config: ExtendedMptConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.n_heads = config.n_heads
self.n_layers = config.n_layers
self.head_dim = self.hidden_size // self.n_heads
self.softmax_scale = config.attn_config.softmax_scale
if self.softmax_scale is None:
self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads)
self.attn_dropout_p = config.attn_config.attn_pdrop
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_bias: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
long_range_past_key_value=None,
topk=None,
faiss_indexes=None,
mask_by_sim=None,
sim_threshold=None,
position_bias_ae=None,
current_layer=None,
output_retrieved_memory_idx=False,
):
batch_size, seq_length = hidden_states.shape[:2]
mixed_qkv = self.Wqkv(hidden_states)
query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2)
query_states = query_states.reshape(
batch_size, seq_length, self.n_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.reshape(
batch_size, seq_length, self.n_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.reshape(
batch_size, seq_length, self.n_heads, self.head_dim
).transpose(1, 2)
if past_key_value is not None:
if len(past_key_value) != 0:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states)
bsz, nh, s_q, d = query_states.shape
attention_scores = (
torch.matmul(query_states, key_states.transpose(-1, -2))
* self.softmax_scale
)
key_length = key_states.shape[-2]
query_length = (
seq_length
if past_key_value is None
else seq_length + past_key_value[0].shape[2]
)
if position_bias is not None:
if len(position_bias.shape) != 3:
raise ValueError(
f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}"
)
position_bias_query_index = max(0, position_bias.size(1) - query_length)
position_bias_key_index = max(0, position_bias.size(2) - key_length)
position_bias = position_bias[
:, position_bias_query_index:, position_bias_key_index:
]
attention_scores = attention_scores + position_bias
# EM: Retrieve memories from cache or faiss indexes
if long_range_past_key_value is not None or faiss_indexes is not None:
if long_range_past_key_value is not None: # Manual store
k_cache, v_cache = long_range_past_key_value
s_cache = k_cache.size(-2)
k_cache = k_cache.to(key_states.device)
v_cache = v_cache.to(key_states.device)
# Normalize query and key vectors
q_n = query_states / vector_norm(
query_states, ord=2, dim=-1, keepdim=True
)
k_n = k_cache / vector_norm(k_cache, ord=2, dim=-1, keepdim=True)
sim = q_n.matmul(k_n.transpose(-1, -2))
if s_cache < topk: # number of tokens in cache < topk
topk = s_cache
val, idx = torch.topk(sim, k=topk, dim=-1) # Retrieve topk memories
reshaped_idx = idx.reshape(bsz, nh, s_q * topk)
selected_k = k_cache.gather(
dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d)
)
selected_v = v_cache.gather(
dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d)
)
elif faiss_indexes is not None: # FAISS indexes
kn_index, kv_index = faiss_indexes
q_n = query_states / vector_norm(
query_states, ord=2, dim=-1, keepdim=True
)
# One-hot encoding for layer, head to only retrieve memories from the same layer, head
one_hot_encodings = (
F.one_hot(
torch.arange(0, nh * self.n_layers, device=query_states.device)
)
* 10
)
q_n = torch.concat(
[
rearrange(q_n, "b h s d -> b (h s) d", h=nh),
one_hot_encodings[nh * current_layer : nh * (current_layer + 1)]
.unsqueeze(0)
.repeat_interleave(repeats=query_states.size(-2), dim=-2),
],
dim=-1,
).squeeze()
if kn_index.ntotal / (nh * self.n_layers) < topk:
topk = int(kn_index.ntotal / (nh * self.n_layers))
val, idx = kn_index.search(q_n.to("cpu").detach().numpy(), k=topk)
val = torch.tensor(val - 100).reshape(bsz, nh, s_q, topk) #Similarity includes scale factor from one-hot encoding
reshaped_idx = torch.tensor(
idx % (kn_index.ntotal / (nh * self.n_layers))
).reshape(bsz, nh, s_q * topk)
# Retrieve tensors
selected_k = rearrange(
torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, :d],
"(h s) d -> 1 h s d",
h=nh,
).to(query_states.device)
selected_v = rearrange(
torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, d:],
"(h s) d -> 1 h s d",
h=nh,
).to(query_states.device)
selected_key_length = selected_k.size(-2)
key_length += selected_key_length
attention_scores_cache = (
query_states.matmul(selected_k.transpose(-1, -2)) * self.softmax_scale
)
# EM: Mask by similarity
if mask_by_sim:
sim_mask = (
rearrange(~(val > sim_threshold).bool(), "b h s i -> b h (s i)")
.unsqueeze(-2)
.expand(-1, -1, s_q, -1)
).to(query_states.device)
attention_scores_cache = attention_scores_cache.masked_fill(
sim_mask, torch.finfo(query_states.dtype).min
)
# EM: Add position bias to cache
if position_bias_ae is not None:
if len(position_bias_ae.shape) != 3:
raise ValueError(
f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias_ae.shape)}"
)
position_bias_query_index = max(
0, position_bias_ae.size(1) - query_length
)
position_bias_key_index = max(
0, position_bias_ae.size(2) - selected_key_length
)
position_bias_ae = position_bias_ae[
:, position_bias_query_index:, position_bias_key_index:
]
attention_scores_cache = attention_scores_cache + position_bias_ae
# EM: Concatenate cache and current attention weights, values
attention_scores = torch.cat(
[attention_scores_cache, attention_scores], dim=-1
) # Concat attention scores, values
value_states = torch.cat([selected_v, value_states], dim=-2)
# EM: Create mask for external memories, queries only attend to their own memories
def _create_external_memories_mask(k, s_q, device):
mask = torch.zeros(s_q, s_q * k, device=device, dtype=torch.bool)
for i in range(s_q):
mask[i, i * k : (i + 1) * k] = 1
return ~mask
if attention_mask is not None:
# EM: Concatenate attention mask with external memories mask
if long_range_past_key_value is not None or faiss_indexes is not None:
mask = _create_external_memories_mask(
k=topk, s_q=s_q, device=attention_scores.device
)
attention_mask = attention_mask.squeeze(dim=0).squeeze(dim=0)
attention_mask = torch.cat([mask, attention_mask], dim=1)
attention_scores = attention_scores.masked_fill(
attention_mask, torch.finfo(query_states.dtype).min
)
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to(
value_states.dtype
)
attn_weights = nn.functional.dropout(
attn_weights, p=self.attn_dropout_p, training=self.training
)
context_states = torch.matmul(attn_weights, value_states)
context_states = (
context_states.permute(0, 2, 1, 3)
.contiguous()
.view(batch_size, seq_length, -1)
)
attn_output = self.out_proj(context_states)
if not output_retrieved_memory_idx:
reshaped_idx = None
return attn_output, attn_weights, past_key_value, reshaped_idx
class MptMLP(nn.Module):
def __init__(self, config: ExtendedMptConfig):
super().__init__()
hidden_size = config.hidden_size
self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False)
self.act = nn.GELU(approximate="none")
self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False)
self.hidden_dropout = config.attn_config.attn_pdrop
def forward(
self, hidden_states: torch.Tensor, residual: torch.Tensor
) -> torch.Tensor:
hidden_states = self.act(self.up_proj(hidden_states))
intermediate_output = self.down_proj(hidden_states)
output = F.dropout(
intermediate_output, p=self.hidden_dropout, training=self.training
)
output = output + residual
return output
class MptBlock(nn.Module):
"""MPTBlock"""
def __init__(self, config: ExtendedMptConfig):
super().__init__()
hidden_size = config.hidden_size
self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
# backward compatibility with weights on the Hub
self.norm_1.bias = None
self.num_heads = config.n_heads
self.attn = ExtendedMptAttention(config)
self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
# backward compatibility with weights on the Hub
self.norm_2.bias = None
self.ffn = MptMLP(config)
self.dropout_rate = config.attn_config.attn_pdrop
self.resid_attn_dropout = nn.Dropout(self.dropout_rate)
def forward(
self,
hidden_states: torch.Tensor,
position_bias: torch.Tensor,
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
output_attentions: bool = False,
output_retrieved_memory_idx: bool = False,
topk: int = None,
long_range_past_key_value: Optional[Tuple[torch.Tensor]] = None,
faiss_indexes: Tuple = None,
position_bias_ae=None,
current_layer: int = None,
mask_by_sim: bool = False,
sim_threshold: float = None,
):
# hidden_states: [batch_size, seq_length, hidden_size]
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.norm_1(hidden_states)
residual = hidden_states
# Self attention.
attn_outputs, attn_weights, past_key_value, reshaped_idx = self.attn(
layernorm_output,
position_bias=position_bias,
attention_mask=attention_mask,
past_key_value=layer_past,
long_range_past_key_value=long_range_past_key_value,
topk=topk,
faiss_indexes=faiss_indexes,
position_bias_ae=position_bias_ae,
current_layer=current_layer,
mask_by_sim=mask_by_sim,
sim_threshold=sim_threshold,
output_retrieved_memory_idx=output_retrieved_memory_idx,
)
hidden_states = self.resid_attn_dropout(attn_outputs) + residual
layernorm_output = self.norm_2(hidden_states)
# Get residual
residual = hidden_states
# MLP.
output = self.ffn(layernorm_output, residual)
outputs = (output,)
if use_cache:
outputs += (past_key_value,)
if output_attentions:
outputs += (attn_weights,)
if output_retrieved_memory_idx:
outputs += (reshaped_idx,)
return outputs # hidden_states, present, attentions
class MptPreTrainedModel(PreTrainedModel):
"""MPT Pretrained Model"""
config_class = ExtendedMptConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["MptBlock"]
_keys_to_ignore_on_load_missing = [r"lm_head.*."]
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
if isinstance(module, ExtendedMptConfig):
module.gradient_checkpointing = value
@staticmethod
def _convert_to_mpt_cache(
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
"""
Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...]))
"""
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
batch_size_times_num_heads = batch_size * num_heads
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
return tuple(
(
layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length),
layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim),
)
for layer_past in past_key_value
)
MPT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ExtendedMptConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
Each element of `past_key_values` is a tuple (past_key, past_value):
- past_key: [batch_size * num_heads, head_dim, kv_length]
- past_value: [batch_size * num_heads, kv_length, head_dim]
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
`past_key_values`).
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
use_external_mind (`bool`, *optional*, defaults to `True`):
Whether to attend to external memories.
long_range_past_key_values (`List[Tuple[torch.FloatTensor]]`, *optional*, defaults to None):
Manual store for memories.
faiss_indexes (`Tuple[faiss.swigfaiss_avx2.IndexFlatIP]`, *optional*, defaults to None):
Vector store for memories.
topk (`int`, *optional*, defaults to `10`):
Number of external memories for each query token to retrieve and attend to.
"""
@add_start_docstrings(
"The bare Mpt Model transformer outputting raw hidden-states without any specific head on top.",
MPT_START_DOCSTRING,
)
class ExtendedMptModel(MptPreTrainedModel):
"""Extended MPT Model"""
def __init__(self, config: ExtendedMptConfig):
super().__init__(config)
self.hidden_size = config.hidden_size
self.num_heads = config.n_heads
# Embedding + LN Embedding
self.wte = nn.Embedding(config.vocab_size, self.hidden_size)
# Transformer blocks
self.blocks = nn.ModuleList([MptBlock(config) for _ in range(config.n_layers)])
# Final Layer Norm
self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
# backward compatibility with weights on the Hub
self.norm_f.bias = None
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
self.mask_by_sim = config.attn_config.mask_by_sim
self.sim_threshold = config.attn_config.sim_threshold
self.topk = config.attn_config.topk
self.use_external_mind = config.use_external_mind
self.use_external_mind_by_layer = config.attn_config.use_external_mind_by_layer
def get_input_embeddings(self):
return self.wte
def build_mpt_alibi_tensor(
self,
num_heads,
sequence_length,
sequence_length_with_past,
alibi_bias_max=8,
device=None,
for_ae=None,
topk=None,
):
return build_mpt_alibi_tensor(
num_heads,
sequence_length,
sequence_length_with_past,
alibi_bias_max,
device,
for_ae=for_ae,
topk=topk,
)
def _prepare_attn_mask(
self,
attention_mask: torch.Tensor,
input_shape: Tuple[int, int],
past_key_values_length: int,
) -> torch.BoolTensor:
# create causal mask
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
if input_shape[1] + past_key_values_length != attention_mask.shape[1]:
raise ValueError(
"Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length"
f" {past_key_values_length}."
)
combined_attention_mask = None
device = attention_mask.device
_, src_length = input_shape
if src_length > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
device=device,
past_key_values_length=past_key_values_length,
)
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask | combined_attention_mask
)
return combined_attention_mask
def set_input_embeddings(self, new_embeddings: torch.Tensor):
self.wte = new_embeddings
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved_memory_idx: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_external_mind: Optional[bool] = None,
long_range_past_key_values: Optional[list[Tuple[torch.FloatTensor]]] = None,
faiss_indexes: Tuple = None,
topk: int = None,
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_retrieved_memory_idx = (
output_retrieved_memory_idx
if output_retrieved_memory_idx is not None
else False
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
use_external_mind = (
use_external_mind
if use_external_mind is not None
else self.use_external_mind
)
topk = topk if topk is not None else self.topk
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past_key_values is None:
past_key_values = tuple([None] * len(self.blocks))
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
hidden_states = inputs_embeds
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
all_idx = () if output_retrieved_memory_idx else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Compute alibi tensor: check build_alibi_tensor documentation
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values[0] is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), device=hidden_states.device
)
else:
attention_mask = attention_mask.to(hidden_states.device)
alibi = self.build_mpt_alibi_tensor(
self.num_heads,
self.config.max_seq_len,
seq_length_with_past,
device=hidden_states.device,
)
# EM: Alibi tensor for retrieved kvs
alibi_ae = self.build_mpt_alibi_tensor(
self.num_heads,
seq_length,
seq_length_with_past,
device=hidden_states.device,
for_ae=True,
topk=topk,
)
causal_mask = self._prepare_attn_mask(
attention_mask,
input_shape=(batch_size, seq_length),
past_key_values_length=past_key_values_length,
)
for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
long_range_past_key_value = (
long_range_past_key_values[i]
if (
long_range_past_key_values is not None
and self.use_external_mind_by_layer[i]
and use_external_mind is True
)
else None
)
if long_range_past_key_value is not None and faiss_indexes is not None:
raise NotImplementedError(
"""Using faiss and passing key value pairs
manually are mutually exclusive right now."""
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(
*inputs,
use_cache=use_cache,
output_attentions=output_attentions,
)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
alibi,
causal_mask,
layer_past,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=causal_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_retrieved_memory_idx=output_retrieved_memory_idx,
position_bias=alibi,
position_bias_ae=alibi_ae,
topk=topk,
long_range_past_key_value=long_range_past_key_value,
faiss_indexes=faiss_indexes,
mask_by_sim=self.mask_by_sim,
sim_threshold=self.sim_threshold,
current_layer=i,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (
outputs[2 if use_cache else 1],
)
if output_retrieved_memory_idx:
idx = (
3
if (use_cache & output_attentions)
else 2
if (use_cache or output_attentions)
else 1
)
all_idx = all_idx + (outputs[idx],)
# Add last hidden state
hidden_states = self.norm_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
all_idx,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=(all_self_attentions, all_idx), # EM: Return idx of retrieved memories
)
@add_start_docstrings(
"""
The MPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
MPT_START_DOCSTRING,
)
class ExtendedMptForCausalLM(MptPreTrainedModel):
"""Extended MPT for Causal LM."""
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: ExtendedMptConfig, external_memories:list=None):
super().__init__(config)
self.transformer: ExtendedMptModel = ExtendedMptModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.use_external_mind = config.use_external_mind
self.memory_type = config.attn_config.memory_type
self.memory_ids = None
self.memories = None
self.memory_device = config.attn_config.memory_device
self.remove_special_ids = config.attn_config.remove_special_ids
self.tokenizer_all_special_ids = config.attn_config.tokenizer_all_special_ids
# EM: Memory token ids
if external_memories is not None:
self.memory_ids = external_memories
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings: torch.Tensor):
self.lm_head = new_embeddings
# EM: Clear memory cache
def clear_memory(self):
"""Clear memory cache."""
self.memory_ids = None
self.memories = None
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
**kwargs,
) -> dict:
# only last token for input_ids if past is not None
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values, # NITS should it be layer_past?
"use_cache": use_cache,
"attention_mask": attention_mask,
"use_external_mind": kwargs.get("use_external_mind"), # EM: Add config here
"topk": kwargs.get("topk"),
}
)
return model_inputs
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_retrieved_memory_idx: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_external_mind: Optional[bool] = None,
topk: int = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# EM: Generate key value cache once on first call
if (
self.memory_ids is not None and self.memories is None
):
self.memory_ids = torch.tensor([self.memory_ids], device=self.device) if type(self.memory_ids)==list else self.memory_ids
self.memories = self.generate_cache(
self.memory_ids, cache_type=self.memory_type,
)
# EM: Remove special tokens from memory cache
if self.remove_special_ids:
idx_to_remove = [
token_idx
for token_idx, token in enumerate(self.memory_ids[0])
if token in self.tokenizer_all_special_ids
]
if self.memory_type == "manual":
mask = torch.ones(self.memories[0][0].size(), dtype=torch.bool)
mask[:, :, idx_to_remove, :] = False
new_size = (
self.memories[0][0].size(0),
self.memories[0][0].size(1),
-1,
self.memories[0][0].size(3),
)
self.memories = [
(ks[mask].view(new_size), vs[mask].view(new_size))
for ks, vs in self.memories
]
else:
kn_index, kv_index = self.memories
all_idx_to_remove = [
[
i
for i in range(0, kn_index.ntotal)
if (
i
% (
kn_index.ntotal
/ (
self.config.num_attention_heads
* self.config.num_hidden_layers
)
)
)
== j
]
for j in idx_to_remove
]
kn_index.remove_ids(
np.array(all_idx_to_remove).flatten().astype("int64")
)
kv_index.remove_ids(
np.array(all_idx_to_remove).flatten().astype("int64")
)
use_external_mind = (
use_external_mind
if use_external_mind is not None
else self.use_external_mind
)
topk = topk if topk is not None else None
long_range_past_key_values = None
faiss_indexes = None
if hasattr(self, "memories") and isinstance(self.memories, list):
long_range_past_key_values = self.memories
elif hasattr(self, "memories"):
faiss_indexes = self.memories
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_retrieved_memory_idx=output_retrieved_memory_idx,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
long_range_past_key_values=long_range_past_key_values,
faiss_indexes=faiss_indexes,
use_external_mind=use_external_mind,
topk=topk,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
batch_size, seq_length, vocab_size = shift_logits.shape
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(batch_size * seq_length, vocab_size),
shift_labels.view(batch_size * seq_length),
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def _reorder_cache(
self,
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...],
beam_idx: torch.LongTensor,
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
# Get a copy of `beam_idx` on all the devices where we need those indices.
device_to_beam_idx = {
past_state.device: beam_idx.to(past_state.device)
for layer_past in past
for past_state in layer_past
}
reordered_past = tuple(
(
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
)
for layer_past in past
)
return reordered_past
# EM: Add method to generate key-value cache
def generate_cache(
self,
input_ids: torch.LongTensor,
stride: int = 512,
max_len: int = 3072,
cache_type: str = "manual",
):
"""Generate cache for long range attention."""
if cache_type not in ["manual", "faiss"]:
raise NotImplementedError(f"Cache type {cache_type} not implemented.")
prev_end_loc = 0
long_range_past_key_values = None
faiss_indexes = None
for b_idx in range(
0, input_ids.size(-1), stride
): # generate kv-pairs using stride
end_loc = min(b_idx + max_len, input_ids.size(-1))
trg_len = end_loc - prev_end_loc
subseq = input_ids[:, b_idx:end_loc].to(self.device)
with torch.no_grad():
outputs = self.transformer(
subseq, use_cache=True, use_external_mind=False
)
to_cache = [
(kv[0][:, :, -trg_len:], kv[1][:, :, -trg_len:])
for kv in outputs.past_key_values
]
long_range_past_key_values, faiss_indexes = self.cache(
to_cache,
cache_type,
long_range_past_key_values=long_range_past_key_values,
faiss_indexes=faiss_indexes,
)
prev_end_loc = end_loc
if end_loc == input_ids.size(-1):
break
if long_range_past_key_values is not None:
return long_range_past_key_values
else:
return faiss_indexes
# EM: Add method to cache key value pairs
def cache(
self,
to_cache: list,
cache_type: str = "manual",
long_range_past_key_values: list = None,
faiss_indexes: faiss.IndexFlatIP = None,
max_length_cache=100000,
verbose=False,
):
"""Cache long range attention."""
if (long_range_past_key_values is not None) & (faiss_indexes is not None):
raise NotImplementedError(
"Using faiss and passing key value pairs manually are mutually exclusive right now."
)
# To avoid spinning up a new index for each layer, we add one-hot encodings to the keys so that queries match with the appropriate layer, head
if cache_type == "faiss": # add one-hot encoding to match layer, head indices
one_hot_encodings = (
F.one_hot(torch.arange(0, self.config.n_heads * self.config.n_layers))
* 10
)
# New indices, one to store normalized keys with one-hot encodings, another to retrieve kv pairs without normalization
if faiss_indexes is None:
faiss_indexes = (
faiss.IndexFlatIP(
to_cache[0][0].size(-1) + one_hot_encodings.size(-1)
),
faiss.IndexFlatIP(to_cache[0][0].size(-1) * 2),
)
kn_index, kv_index = faiss_indexes
for l_idx, (k, v) in enumerate(to_cache):
k_n = (k / vector_norm(k, ord=2, dim=-1, keepdim=True)).to("cpu") #Normalize keys for cosine sim
# Indices are 2 dimensional, so flatten
# Add normalized keys with one-hot encodings
k_n = torch.concat(
[
rearrange(k_n, "b h s d -> b (h s) d", h=self.config.n_heads),
one_hot_encodings[
self.config.n_heads
* l_idx : self.config.n_heads
* (l_idx + 1)
]
.unsqueeze(0)
.repeat_interleave(repeats=k.size(-2), dim=-2),
],
dim=-1,
)
kn_index.add(k_n.squeeze().numpy())
# Add unnormalized keys and values
k = rearrange(k, "b h s d -> b (h s) d", h=self.config.n_heads)
v = rearrange(v, "b h s d -> b (h s) d", h=self.config.n_heads)
kv_index.add(
torch.concat([k.squeeze(), v.squeeze()], dim=1).to("cpu").numpy()
)
else:
# Simply use list to store key value pairs
if long_range_past_key_values is None:
long_range_past_key_values = [
(k.to(self.memory_device), v.to(self.memory_device))
for k, v in to_cache
]
else:
long_range_past_key_values = [
(
torch.concat(
[kv[0], to_cache[ind][0].to(self.memory_device)], dim=2
),
torch.concat(
[kv[1], to_cache[ind][1].to(self.memory_device)], dim=2
),
)
for ind, kv in enumerate(long_range_past_key_values)
]
if (
long_range_past_key_values is not None
): # set a limit on manual memory length
if long_range_past_key_values[0][0].size(-2) > max_length_cache:
long_range_past_key_values = [
(
kv[0][:, :, -max_length_cache:],
kv[1][:, :, -max_length_cache:],
)
for kv in long_range_past_key_values
]
if verbose:
if cache_type == "faiss":
print(f"{kn_index.ntotal} keys in faiss index")
else:
print(f"{long_range_past_key_values[0][0].size(-2)} cached kvs")
return (
long_range_past_key_values,
(kn_index, kv_index) if cache_type == "faiss" else None,
)
|