Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +104 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2204.82 +/- 47.32
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:141398a2c869ec4749f89cc34b43f7c132b6ff34bb5ee13e247e9b78f8494b23
|
3 |
+
size 129158
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f88fa7a6b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f88fa7a6c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f88fa7a6ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f88fa7a6d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f88fa7a6dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f88fa7a6e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f88fa7a6ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f88fa7a6f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f88fa7aa040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f88fa7aa0d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f88fa7aa160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f88fa7aa1f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f88fa7a18d0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
26 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
27 |
+
"optimizer_kwargs": {
|
28 |
+
"alpha": 0.99,
|
29 |
+
"eps": 1e-05,
|
30 |
+
"weight_decay": 0
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"observation_space": {
|
34 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
35 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
36 |
+
"dtype": "float32",
|
37 |
+
"_shape": [
|
38 |
+
28
|
39 |
+
],
|
40 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
41 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
42 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
43 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"_np_random": null
|
45 |
+
},
|
46 |
+
"action_space": {
|
47 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
48 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
49 |
+
"dtype": "float32",
|
50 |
+
"_shape": [
|
51 |
+
8
|
52 |
+
],
|
53 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
54 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
55 |
+
"bounded_below": "[ True True True True True True True True]",
|
56 |
+
"bounded_above": "[ True True True True True True True True]",
|
57 |
+
"_np_random": null
|
58 |
+
},
|
59 |
+
"n_envs": 4,
|
60 |
+
"num_timesteps": 2000000,
|
61 |
+
"_total_timesteps": 2000000,
|
62 |
+
"_num_timesteps_at_start": 0,
|
63 |
+
"seed": null,
|
64 |
+
"action_noise": null,
|
65 |
+
"start_time": 1677878390393656767,
|
66 |
+
"learning_rate": 0.0007,
|
67 |
+
"tensorboard_log": null,
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
71 |
+
},
|
72 |
+
"_last_obs": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHyr7D/Zzka/46x3vg2mOkADKhvA13LJPl1TpL9rdZ+//zAfP6K1ID+sHpw/R6oiv4g0xj5QLCA9E8WaPlTdEsB3ksO/IXqyvxXOnb/GLAM/eSMOP2V8eL92r/a+8XKcwADG4j7sA6g+yvT4PoBArr9zXtY/ydN7v16nH7/2ghdAhfMdwMvPk78VdaO/4JSMv3lsAz98mve/SSYYPwR1sb/ES4s/GZZrv17mZT3gUpi/jtr4vyKHQTvHVhu/P/DEP/EXZD8CXpy/OVA4v7enkD8jfxDAogdDwMr0+D6AQK6/OeI6P4O5k7/b/o2/fj3HP+JbvL/TeLA/aAKPv+XmPL8pGr2/cEI0P+hxgT8py9o+fOClPq+kWb7AcEQ/3ZuqPC/ndT7OFr+/Y2Orv/jXyb4qs8A/ZUVpPh1RHkCvrC1AAMbiPuwDqD7K9Pg+rgw8Pw2AF0Ahl/i+OjAIPmU0Fj+ah62//GiFvyzrpL/qmfm/2GsvPhStB8Ao1fU/PrlMvjYPLb9WdJE/qqucPnQqbr+yFOm/rrxbPy7HH7+z048/VBCkvcttMb/N5lW/TJ2WPiN/EMDsA6g+yvT4PoBArr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
75 |
+
},
|
76 |
+
"_last_episode_starts": {
|
77 |
+
":type:": "<class 'numpy.ndarray'>",
|
78 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
79 |
+
},
|
80 |
+
"_last_original_obs": {
|
81 |
+
":type:": "<class 'numpy.ndarray'>",
|
82 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACHtF42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6bqNPAAAAAAS1du/AAAAAEtUzD0AAAAAIHPvPwAAAAAHPwS8AAAAAD8t+T8AAAAAsf+FvQAAAADHZum/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEu+DtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgANcJT0AAAAAkuTjvwAAAAB/PKQ9AAAAAMjF2z8AAAAAKJIMvgAAAAAFZes/AAAAAGehiz0AAAAAQtTtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACirlzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICp5hc9AAAAAKy5/L8AAAAArRqBPQAAAAAFqfA/AAAAAO2C5z0AAAAAarD8PwAAAABelnK9AAAAALIt7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACstYq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0gmFvQAAAACGFf+/AAAAAFYtnzwAAAAAQv7uPwAAAAD1zm29AAAAABAG4T8AAAAARciNPQAAAABhVN+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
83 |
+
},
|
84 |
+
"_episode_num": 0,
|
85 |
+
"use_sde": true,
|
86 |
+
"sde_sample_freq": -1,
|
87 |
+
"_current_progress_remaining": 0.0,
|
88 |
+
"ep_info_buffer": {
|
89 |
+
":type:": "<class 'collections.deque'>",
|
90 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ9ksYyfthOMAWyUTegDjAF0lEdAs7xJC1JDmnV9lChoBkdAncf3xe9i+mgHTegDaAhHQLO9HmZmZmZ1fZQoaAZHQJv0v6wdKdxoB03oA2gIR0CzvfQ5myxBdX2UKGgGR0Cc/4SmZVn3aAdN6ANoCEdAs8Qj/1g6VHV9lChoBkdAmqz8POIInmgHTegDaAhHQLPFFRc/t6Z1fZQoaAZHQJ3zNnBciW5oB03oA2gIR0CzxfrVrhzedX2UKGgGR0Cc0nrxiG34aAdN6ANoCEdAs8bHwsoUjHV9lChoBkdAm6zIl6Z6U2gHTegDaAhHQLPLknkT6BR1fZQoaAZHQJubGHJtBOZoB03oA2gIR0CzzDRMzuWsdX2UKGgGR0Cd9eSApazNaAdN6ANoCEdAs80IAaNuL3V9lChoBkdAnm2bBO58SmgHTegDaAhHQLPN17bL2Yh1fZQoaAZHQJ8I+PV/c35oB03oA2gIR0Cz1Fp0W/JvdX2UKGgGR0CfsJpmmLtNaAdN6ANoCEdAs9T4xvegtnV9lChoBkdAnpratga3qmgHTegDaAhHQLPVxYD1XeZ1fZQoaAZHQJ8Pji4rjHZoB03oA2gIR0Cz1pQyM1jzdX2UKGgGR0CeVQSf16E8aAdN6ANoCEdAs9tTIp6QeXV9lChoBkdAnWPMWTHKfWgHTegDaAhHQLPb7LUTcqR1fZQoaAZHQJYvFeZ5Rj1oB03oA2gIR0Cz3MBhMJyAdX2UKGgGR0CfPG5le4TcaAdN6ANoCEdAs92LCKrJbXV9lChoBkdAnBz4tthuwWgHTegDaAhHQLPkBVrAP/d1fZQoaAZHQJ4PHQeFL39oB03oA2gIR0Cz5KqQmu1XdX2UKGgGR0Cdwg72tdRjaAdN6ANoCEdAs+V2SyMUAXV9lChoBkdAnZhEM5OrQ2gHTegDaAhHQLPmPXyiEg51fZQoaAZHQJ7Tn7j1f3NoB03oA2gIR0Cz6u5WRzRydX2UKGgGR0CdzwHE/B3zaAdN6ANoCEdAs+uSwpvxY3V9lChoBkdAnXjsajvd/WgHTegDaAhHQLPsa1LJ0XB1fZQoaAZHQJ6V97BwdbRoB03oA2gIR0Cz7TrnTy8SdX2UKGgGR0Cen9HymQ8waAdN6ANoCEdAs/O6UTtb93V9lChoBkdAnSZklRgqmWgHTegDaAhHQLP0U62OQyR1fZQoaAZHQJ3GiR5kbxVoB03oA2gIR0Cz9SGg3974dX2UKGgGR0CfcttaY/mlaAdN6ANoCEdAs/XyV9nbqXV9lChoBkdAn196hDgIhWgHTegDaAhHQLP6pxdpqRF1fZQoaAZHQJx3ozWPLgZoB03oA2gIR0Cz+0efRNRFdX2UKGgGR0CdYlIY3vQXaAdN6ANoCEdAs/wT83uNP3V9lChoBkdAnPYFY6nzhGgHTegDaAhHQLP8+mShakh1fZQoaAZHQJ2RMsVclgNoB03oA2gIR0C0A21r/KhddX2UKGgGR0CfKjxpL26DaAdN6ANoCEdAtAQMHcDbJ3V9lChoBkdAmlLG8IzFdmgHTegDaAhHQLQE4UEPlMh1fZQoaAZHQJzJ/spobn5oB03oA2gIR0C0BbH1FpfydX2UKGgGR0CeAfCUX531aAdN6ANoCEdAtAqV9MK1HHV9lChoBkdAno0iVnmJWWgHTegDaAhHQLQLNmTkhid1fZQoaAZHQJ0u/QdCE6FoB03oA2gIR0C0DBfAj6eodX2UKGgGR0CfJ8yRjjJdaAdN6ANoCEdAtA1FqfvnbXV9lChoBkdAntOd74SHumgHTegDaAhHQLQTajZ+QU51fZQoaAZHQKF7Z+XJHRVoB03oA2gIR0C0FATeTFERdX2UKGgGR0CgDXH/95yEaAdN6ANoCEdAtBTWKGcnV3V9lChoBkdAnnUYLXtjTmgHTegDaAhHQLQVn+jdpIt1fZQoaAZHQJ67rq3VkMFoB03oA2gIR0C0GlD3dsSCdX2UKGgGR0CeZuOPvKEGaAdN6ANoCEdAtBruPxQSBnV9lChoBkdAnjfs9Oh0yWgHTegDaAhHQLQcEQsPJ7t1fZQoaAZHQJ5WOXSjQAxoB03oA2gIR0C0HURo/RmcdX2UKGgGR0CeeaTkQwsYaAdN6ANoCEdAtCMcQvpQlHV9lChoBkdAoDQsHWz4UWgHTegDaAhHQLQjwCJ40Mx1fZQoaAZHQJ2JVgkTpPhoB03oA2gIR0C0JJXKGL1mdX2UKGgGR0CewU37k4m1aAdN6ANoCEdAtCVm/fwZwXV9lChoBkdAmlxNpItlI2gHTegDaAhHQLQqO4j8k2R1fZQoaAZHQJ/BMf5k9U1oB03oA2gIR0C0KxjtG/etdX2UKGgGR0CfwlxI8QqaaAdN6ANoCEdAtCxF46fapXV9lChoBkdAnWoJ3s5XEWgHTegDaAhHQLQtggaFVT91fZQoaAZHQJvX+cTakARoB03oA2gIR0C0Muh4yGi6dX2UKGgGR0Ce2DwD/2kBaAdN6ANoCEdAtDOH37DVIHV9lChoBkdAoB8pW912aGgHTegDaAhHQLQ0UEBKcut1fZQoaAZHQKAUAQr+YMRoB03oA2gIR0C0NRjJZGKAdX2UKGgGR0CeAzvkili0aAdN6ANoCEdAtDntWKdhAnV9lChoBkdAnTdmqLjxTmgHTegDaAhHQLQ60xxkupV1fZQoaAZHQKAzHYDklu5oB03oA2gIR0C0PAxbSqlxdX2UKGgGR0CdkzDFqBVdaAdN6ANoCEdAtD1SfwqiGnV9lChoBkdAnOYlHSWqtGgHTegDaAhHQLRCkCV8kUt1fZQoaAZHQJmji925hBtoB03oA2gIR0C0Qy0tyxRmdX2UKGgGR0CeQm6fapPzaAdN6ANoCEdAtEP6cUdq+XV9lChoBkdAoIEHGdZq22gHTegDaAhHQLREyEYwZfl1fZQoaAZHQJ1ec9jgAIZoB03oA2gIR0C0ShHhS9/SdX2UKGgGR0CdOeDmr8ziaAdN6ANoCEdAtEr9BhQWN3V9lChoBkdAoPtUmKIi1WgHTegDaAhHQLRMQMQVbiZ1fZQoaAZHQKEexREWqLloB03oA2gIR0C0TX8qjJuEdX2UKGgGR0Cf0aquKXOXaAdN6ANoCEdAtFI1+F10T3V9lChoBkdAn9tuGTLW7WgHTegDaAhHQLRS0cwQDmt1fZQoaAZHQKAjbVkMCtBoB03oA2gIR0C0U5/VEuxsdX2UKGgGR0CgBsRmTTvzaAdN6ANoCEdAtFRrmnwXqXV9lChoBkdAoIEu7OE/S2gHTegDaAhHQLRZ0O09hZ11fZQoaAZHQJ+ahNfw7T5oB03oA2gIR0C0WsXbh3qzdX2UKGgGR0CgJoEJrtVraAdN6ANoCEdAtFwKnYQJ5XV9lChoBkdAoMuvdbgTAWgHTegDaAhHQLRdIyHVPN51fZQoaAZHQJyBHUhFEzBoB03oA2gIR0C0YdLdrO7hdX2UKGgGR0Cc5QHkcS5BaAdN6ANoCEdAtGJuwwCbMHV9lChoBkdAoDcDwBo242gHTegDaAhHQLRjPfLLZBd1fZQoaAZHQJ8SyCaqjrRoB03oA2gIR0C0ZAYvi97GdX2UKGgGR0Ce+qvAXVLBaAdN6ANoCEdAtGnAxXXAdnV9lChoBkdAn4gGgWac7WgHTegDaAhHQLRqr7v5P/J1fZQoaAZHQJ2rDi++M61oB03oA2gIR0C0a/AR5C4SdX2UKGgGR0CgpcdweeWfaAdN6ANoCEdAtGy16IFeOXV9lChoBkdAnNFKK1og3mgHTegDaAhHQLRxbq20AtF1fZQoaAZHQKBwXBk7OmloB03oA2gIR0C0cgf3ai9JdX2UKGgGR0CgtWOfEn9faAdN6ANoCEdAtHLQPWhAW3V9lChoBkdAnzcKa9bosGgHTegDaAhHQLRznBCD28J1fZQoaAZHQJ+kCJEYwZhoB03oA2gIR0C0eW889wFUdX2UKGgGR0CgHJyeI2wWaAdN6ANoCEdAtHponSfDk3V9lChoBkdAoAX/LaEi+2gHTegDaAhHQLR7bfsu3+d1fZQoaAZHQKDGhP8AJcBoB03oA2gIR0C0fDW/JvHcdX2UKGgGR0Cg0XX2mHgxaAdN6ANoCEdAtIDaFM7EHnVlLg=="
|
91 |
+
},
|
92 |
+
"ep_success_buffer": {
|
93 |
+
":type:": "<class 'collections.deque'>",
|
94 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
95 |
+
},
|
96 |
+
"_n_updates": 62500,
|
97 |
+
"n_steps": 8,
|
98 |
+
"gamma": 0.99,
|
99 |
+
"gae_lambda": 0.9,
|
100 |
+
"ent_coef": 0.0,
|
101 |
+
"vf_coef": 0.5,
|
102 |
+
"max_grad_norm": 0.5,
|
103 |
+
"normalize_advantage": false
|
104 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dfddd19361e1b3c0586fad048f5ff4871429705f42006411a4192ae579a6548
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9b567b36b34be14051294f4583dc134612df29a940c53dabe5d660829f531a6
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f88fa7a6b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f88fa7a6c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f88fa7a6ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f88fa7a6d30>", "_build": "<function ActorCriticPolicy._build at 0x7f88fa7a6dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f88fa7a6e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f88fa7a6ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f88fa7a6f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f88fa7aa040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f88fa7aa0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f88fa7aa160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f88fa7aa1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f88fa7a18d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677878390393656767, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHyr7D/Zzka/46x3vg2mOkADKhvA13LJPl1TpL9rdZ+//zAfP6K1ID+sHpw/R6oiv4g0xj5QLCA9E8WaPlTdEsB3ksO/IXqyvxXOnb/GLAM/eSMOP2V8eL92r/a+8XKcwADG4j7sA6g+yvT4PoBArr9zXtY/ydN7v16nH7/2ghdAhfMdwMvPk78VdaO/4JSMv3lsAz98mve/SSYYPwR1sb/ES4s/GZZrv17mZT3gUpi/jtr4vyKHQTvHVhu/P/DEP/EXZD8CXpy/OVA4v7enkD8jfxDAogdDwMr0+D6AQK6/OeI6P4O5k7/b/o2/fj3HP+JbvL/TeLA/aAKPv+XmPL8pGr2/cEI0P+hxgT8py9o+fOClPq+kWb7AcEQ/3ZuqPC/ndT7OFr+/Y2Orv/jXyb4qs8A/ZUVpPh1RHkCvrC1AAMbiPuwDqD7K9Pg+rgw8Pw2AF0Ahl/i+OjAIPmU0Fj+ah62//GiFvyzrpL/qmfm/2GsvPhStB8Ao1fU/PrlMvjYPLb9WdJE/qqucPnQqbr+yFOm/rrxbPy7HH7+z048/VBCkvcttMb/N5lW/TJ2WPiN/EMDsA6g+yvT4PoBArr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACHtF42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6bqNPAAAAAAS1du/AAAAAEtUzD0AAAAAIHPvPwAAAAAHPwS8AAAAAD8t+T8AAAAAsf+FvQAAAADHZum/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEu+DtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgANcJT0AAAAAkuTjvwAAAAB/PKQ9AAAAAMjF2z8AAAAAKJIMvgAAAAAFZes/AAAAAGehiz0AAAAAQtTtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACirlzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICp5hc9AAAAAKy5/L8AAAAArRqBPQAAAAAFqfA/AAAAAO2C5z0AAAAAarD8PwAAAABelnK9AAAAALIt7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACstYq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0gmFvQAAAACGFf+/AAAAAFYtnzwAAAAAQv7uPwAAAAD1zm29AAAAABAG4T8AAAAARciNPQAAAABhVN+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ9ksYyfthOMAWyUTegDjAF0lEdAs7xJC1JDmnV9lChoBkdAncf3xe9i+mgHTegDaAhHQLO9HmZmZmZ1fZQoaAZHQJv0v6wdKdxoB03oA2gIR0CzvfQ5myxBdX2UKGgGR0Cc/4SmZVn3aAdN6ANoCEdAs8Qj/1g6VHV9lChoBkdAmqz8POIInmgHTegDaAhHQLPFFRc/t6Z1fZQoaAZHQJ3zNnBciW5oB03oA2gIR0CzxfrVrhzedX2UKGgGR0Cc0nrxiG34aAdN6ANoCEdAs8bHwsoUjHV9lChoBkdAm6zIl6Z6U2gHTegDaAhHQLPLknkT6BR1fZQoaAZHQJubGHJtBOZoB03oA2gIR0CzzDRMzuWsdX2UKGgGR0Cd9eSApazNaAdN6ANoCEdAs80IAaNuL3V9lChoBkdAnm2bBO58SmgHTegDaAhHQLPN17bL2Yh1fZQoaAZHQJ8I+PV/c35oB03oA2gIR0Cz1Fp0W/JvdX2UKGgGR0CfsJpmmLtNaAdN6ANoCEdAs9T4xvegtnV9lChoBkdAnpratga3qmgHTegDaAhHQLPVxYD1XeZ1fZQoaAZHQJ8Pji4rjHZoB03oA2gIR0Cz1pQyM1jzdX2UKGgGR0CeVQSf16E8aAdN6ANoCEdAs9tTIp6QeXV9lChoBkdAnWPMWTHKfWgHTegDaAhHQLPb7LUTcqR1fZQoaAZHQJYvFeZ5Rj1oB03oA2gIR0Cz3MBhMJyAdX2UKGgGR0CfPG5le4TcaAdN6ANoCEdAs92LCKrJbXV9lChoBkdAnBz4tthuwWgHTegDaAhHQLPkBVrAP/d1fZQoaAZHQJ4PHQeFL39oB03oA2gIR0Cz5KqQmu1XdX2UKGgGR0Cdwg72tdRjaAdN6ANoCEdAs+V2SyMUAXV9lChoBkdAnZhEM5OrQ2gHTegDaAhHQLPmPXyiEg51fZQoaAZHQJ7Tn7j1f3NoB03oA2gIR0Cz6u5WRzRydX2UKGgGR0CdzwHE/B3zaAdN6ANoCEdAs+uSwpvxY3V9lChoBkdAnXjsajvd/WgHTegDaAhHQLPsa1LJ0XB1fZQoaAZHQJ6V97BwdbRoB03oA2gIR0Cz7TrnTy8SdX2UKGgGR0Cen9HymQ8waAdN6ANoCEdAs/O6UTtb93V9lChoBkdAnSZklRgqmWgHTegDaAhHQLP0U62OQyR1fZQoaAZHQJ3GiR5kbxVoB03oA2gIR0Cz9SGg3974dX2UKGgGR0CfcttaY/mlaAdN6ANoCEdAs/XyV9nbqXV9lChoBkdAn196hDgIhWgHTegDaAhHQLP6pxdpqRF1fZQoaAZHQJx3ozWPLgZoB03oA2gIR0Cz+0efRNRFdX2UKGgGR0CdYlIY3vQXaAdN6ANoCEdAs/wT83uNP3V9lChoBkdAnPYFY6nzhGgHTegDaAhHQLP8+mShakh1fZQoaAZHQJ2RMsVclgNoB03oA2gIR0C0A21r/KhddX2UKGgGR0CfKjxpL26DaAdN6ANoCEdAtAQMHcDbJ3V9lChoBkdAmlLG8IzFdmgHTegDaAhHQLQE4UEPlMh1fZQoaAZHQJzJ/spobn5oB03oA2gIR0C0BbH1FpfydX2UKGgGR0CeAfCUX531aAdN6ANoCEdAtAqV9MK1HHV9lChoBkdAno0iVnmJWWgHTegDaAhHQLQLNmTkhid1fZQoaAZHQJ0u/QdCE6FoB03oA2gIR0C0DBfAj6eodX2UKGgGR0CfJ8yRjjJdaAdN6ANoCEdAtA1FqfvnbXV9lChoBkdAntOd74SHumgHTegDaAhHQLQTajZ+QU51fZQoaAZHQKF7Z+XJHRVoB03oA2gIR0C0FATeTFERdX2UKGgGR0CgDXH/95yEaAdN6ANoCEdAtBTWKGcnV3V9lChoBkdAnnUYLXtjTmgHTegDaAhHQLQVn+jdpIt1fZQoaAZHQJ67rq3VkMFoB03oA2gIR0C0GlD3dsSCdX2UKGgGR0CeZuOPvKEGaAdN6ANoCEdAtBruPxQSBnV9lChoBkdAnjfs9Oh0yWgHTegDaAhHQLQcEQsPJ7t1fZQoaAZHQJ5WOXSjQAxoB03oA2gIR0C0HURo/RmcdX2UKGgGR0CeeaTkQwsYaAdN6ANoCEdAtCMcQvpQlHV9lChoBkdAoDQsHWz4UWgHTegDaAhHQLQjwCJ40Mx1fZQoaAZHQJ2JVgkTpPhoB03oA2gIR0C0JJXKGL1mdX2UKGgGR0CewU37k4m1aAdN6ANoCEdAtCVm/fwZwXV9lChoBkdAmlxNpItlI2gHTegDaAhHQLQqO4j8k2R1fZQoaAZHQJ/BMf5k9U1oB03oA2gIR0C0KxjtG/etdX2UKGgGR0CfwlxI8QqaaAdN6ANoCEdAtCxF46fapXV9lChoBkdAnWoJ3s5XEWgHTegDaAhHQLQtggaFVT91fZQoaAZHQJvX+cTakARoB03oA2gIR0C0Muh4yGi6dX2UKGgGR0Ce2DwD/2kBaAdN6ANoCEdAtDOH37DVIHV9lChoBkdAoB8pW912aGgHTegDaAhHQLQ0UEBKcut1fZQoaAZHQKAUAQr+YMRoB03oA2gIR0C0NRjJZGKAdX2UKGgGR0CeAzvkili0aAdN6ANoCEdAtDntWKdhAnV9lChoBkdAnTdmqLjxTmgHTegDaAhHQLQ60xxkupV1fZQoaAZHQKAzHYDklu5oB03oA2gIR0C0PAxbSqlxdX2UKGgGR0CdkzDFqBVdaAdN6ANoCEdAtD1SfwqiGnV9lChoBkdAnOYlHSWqtGgHTegDaAhHQLRCkCV8kUt1fZQoaAZHQJmji925hBtoB03oA2gIR0C0Qy0tyxRmdX2UKGgGR0CeQm6fapPzaAdN6ANoCEdAtEP6cUdq+XV9lChoBkdAoIEHGdZq22gHTegDaAhHQLREyEYwZfl1fZQoaAZHQJ1ec9jgAIZoB03oA2gIR0C0ShHhS9/SdX2UKGgGR0CdOeDmr8ziaAdN6ANoCEdAtEr9BhQWN3V9lChoBkdAoPtUmKIi1WgHTegDaAhHQLRMQMQVbiZ1fZQoaAZHQKEexREWqLloB03oA2gIR0C0TX8qjJuEdX2UKGgGR0Cf0aquKXOXaAdN6ANoCEdAtFI1+F10T3V9lChoBkdAn9tuGTLW7WgHTegDaAhHQLRS0cwQDmt1fZQoaAZHQKAjbVkMCtBoB03oA2gIR0C0U5/VEuxsdX2UKGgGR0CgBsRmTTvzaAdN6ANoCEdAtFRrmnwXqXV9lChoBkdAoIEu7OE/S2gHTegDaAhHQLRZ0O09hZ11fZQoaAZHQJ+ahNfw7T5oB03oA2gIR0C0WsXbh3qzdX2UKGgGR0CgJoEJrtVraAdN6ANoCEdAtFwKnYQJ5XV9lChoBkdAoMuvdbgTAWgHTegDaAhHQLRdIyHVPN51fZQoaAZHQJyBHUhFEzBoB03oA2gIR0C0YdLdrO7hdX2UKGgGR0Cc5QHkcS5BaAdN6ANoCEdAtGJuwwCbMHV9lChoBkdAoDcDwBo242gHTegDaAhHQLRjPfLLZBd1fZQoaAZHQJ8SyCaqjrRoB03oA2gIR0C0ZAYvi97GdX2UKGgGR0Ce+qvAXVLBaAdN6ANoCEdAtGnAxXXAdnV9lChoBkdAn4gGgWac7WgHTegDaAhHQLRqr7v5P/J1fZQoaAZHQJ2rDi++M61oB03oA2gIR0C0a/AR5C4SdX2UKGgGR0CgpcdweeWfaAdN6ANoCEdAtGy16IFeOXV9lChoBkdAnNFKK1og3mgHTegDaAhHQLRxbq20AtF1fZQoaAZHQKBwXBk7OmloB03oA2gIR0C0cgf3ai9JdX2UKGgGR0CgtWOfEn9faAdN6ANoCEdAtHLQPWhAW3V9lChoBkdAnzcKa9bosGgHTegDaAhHQLRznBCD28J1fZQoaAZHQJ+kCJEYwZhoB03oA2gIR0C0eW889wFUdX2UKGgGR0CgHJyeI2wWaAdN6ANoCEdAtHponSfDk3V9lChoBkdAoAX/LaEi+2gHTegDaAhHQLR7bfsu3+d1fZQoaAZHQKDGhP8AJcBoB03oA2gIR0C0fDW/JvHcdX2UKGgGR0Cg0XX2mHgxaAdN6ANoCEdAtIDaFM7EHnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e84950d446ec221ee837877c5e7ec9fb4309ca246d071245be2aaa514e28c241
|
3 |
+
size 1316264
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2204.819989961665, "std_reward": 47.32494873672754, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-03T22:42:17.200835"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dbbbc8b8e6ee4e27278bf73ad0c510e1ca2ba1e01206e96345313ec81a2b785
|
3 |
+
size 2136
|