resume: false device: cuda use_amp: false seed: 100000 dataset_repo_id: notmahi/tutorial-ball video_backend: pyav training: offline_steps: 80000 online_steps: 0 online_steps_between_rollouts: 1 online_sampling_ratio: 0.5 online_env_seed: ??? eval_freq: 5000 log_freq: 250 save_checkpoint: true save_freq: 5000 num_workers: 4 batch_size: 128 image_transforms: enable: false max_num_transforms: 3 random_order: false brightness: weight: 1 min_max: - 0.8 - 1.2 contrast: weight: 1 min_max: - 0.8 - 1.2 saturation: weight: 1 min_max: - 0.5 - 1.5 hue: weight: 1 min_max: - -0.05 - 0.05 sharpness: weight: 1 min_max: - 0.8 - 1.2 lr: 1.0e-05 lr_backbone: 1.0e-05 weight_decay: 0.0001 grad_clip_norm: 10 delta_timestamps: action: - 0.0 eval: n_episodes: 50 batch_size: 50 use_async_envs: false wandb: enable: true disable_artifact: false project: lerobot notes: '' fps: 60 env: name: ballgame task: Ballgame-v0 state_dim: 4 action_dim: 2 fps: ${fps} episode_length: 1000 gym: fps: ${fps} obs_type: pixels_agent_pos timeout: 1000 policy: name: mlpbc n_obs_steps: 1 chunk_size: 1 n_action_steps: 1 input_shapes: observation.state: - ${env.state_dim} output_shapes: action: - ${env.action_dim} input_normalization_modes: observation.state: min_max output_normalization_modes: action: min_max use_l1_loss: false num_hidden_layers: 3 vision_backbone: resnet18 pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1 replace_final_stride_with_dilation: false dim_model: 256 temporal_ensemble_momentum: null dropout: 0.1