File size: 4,219 Bytes
70ba90f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
resume: false
device: cuda
use_amp: false
seed: 100000
dataset_repo_id: notmahi/tutorial-tri-BimanualPutRedBellPepperInBin
video_backend: pyav
training:
offline_steps: 20000
online_steps: 0
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: ???
eval_freq: 0
log_freq: 250
save_checkpoint: true
save_freq: 5000
num_workers: 4
batch_size: 32
image_transforms:
enable: false
max_num_transforms: 3
random_order: false
brightness:
weight: 1
min_max:
- 0.8
- 1.2
contrast:
weight: 1
min_max:
- 0.8
- 1.2
saturation:
weight: 1
min_max:
- 0.5
- 1.5
hue:
weight: 1
min_max:
- -0.05
- 0.05
sharpness:
weight: 1
min_max:
- 0.8
- 1.2
grad_clip_norm: 10
lr: 0.0001
lr_scheduler: cosine
lr_warmup_steps: 500
adam_betas:
- 0.95
- 0.999
adam_eps: 1.0e-08
adam_weight_decay: 1.0e-06
delta_timestamps:
observation.images.wrist_right_minus:
- -0.03333333333333333
- 0.0
observation.images.wrist_left_plus:
- -0.03333333333333333
- 0.0
observation.images.scene_right_0:
- -0.03333333333333333
- 0.0
observation.images.scene_left_0:
- -0.03333333333333333
- 0.0
observation.state:
- -0.03333333333333333
- 0.0
action:
- -0.03333333333333333
- 0.0
- 0.03333333333333333
- 0.06666666666666667
- 0.1
- 0.13333333333333333
- 0.16666666666666666
- 0.2
- 0.23333333333333334
- 0.26666666666666666
- 0.3
- 0.3333333333333333
- 0.36666666666666664
- 0.4
- 0.43333333333333335
- 0.4666666666666667
drop_n_last_frames: 7
eval:
n_episodes: 50
batch_size: 50
use_async_envs: false
wandb:
enable: false
disable_artifact: false
project: lerobot
notes: ''
fps: 30
env:
name: tri
task: PutSpatulaInUtensilCrock-v0
state_dim: 20
action_dim: 14
fps: ${fps}
episode_length: 400
gym:
fps: ${fps}
override_dataset_stats:
observation.images.wrist_right_minus:
mean:
- - - 0.485
- - - 0.456
- - - 0.406
std:
- - - 0.229
- - - 0.224
- - - 0.225
observation.images.wrist_left_plus:
mean:
- - - 0.485
- - - 0.456
- - - 0.406
std:
- - - 0.229
- - - 0.224
- - - 0.225
observation.images.scene_right_0:
mean:
- - - 0.485
- - - 0.456
- - - 0.406
std:
- - - 0.229
- - - 0.224
- - - 0.225
observation.images.scene_left_0:
mean:
- - - 0.485
- - - 0.456
- - - 0.406
std:
- - - 0.229
- - - 0.224
- - - 0.225
policy:
name: diffusion
n_obs_steps: 2
horizon: 16
n_action_steps: 8
input_shapes:
observation.images.wrist_right_minus:
- 3
- 480
- 640
observation.images.wrist_left_plus:
- 3
- 480
- 640
observation.images.scene_right_0:
- 3
- 480
- 640
observation.images.scene_left_0:
- 3
- 480
- 640
observation.state:
- ${env.state_dim}
output_shapes:
action:
- ${env.action_dim}
input_normalization_modes:
observation.images.wrist_right_minus: mean_std
observation.images.wrist_left_plus: mean_std
observation.images.scene_right_0: mean_std
observation.images.scene_left_0: mean_std
observation.state: min_max
output_normalization_modes:
action: min_max
vision_backbone: vit_b_16
pretrained_backbone_weights: IMAGENET1K_SWAG_LINEAR_V1
resize_shape:
- 256
- 342
crop_shape:
- 224
- 224
crop_is_random: true
use_spatial_softmax: false
use_group_norm: true
spatial_softmax_num_keypoints: 32
down_dims:
- 256
- 512
- 1024
kernel_size: 5
n_groups: 8
diffusion_step_embed_dim: 128
use_film_scale_modulation: true
noise_scheduler_type: DDPM
num_train_timesteps: 100
beta_schedule: squaredcos_cap_v2
beta_start: 0.0001
beta_end: 0.02
prediction_type: epsilon
clip_sample: true
clip_sample_range: 1.0
num_inference_steps: null
use_ema: true
ema_update_after_step: 0
ema_min_alpha: 0.0
ema_max_alpha: 0.9999
ema_inv_gamma: 1.0
ema_power: 0.75
do_mask_loss_for_padding: false
|