vqbet-maze-ball-1 / config.yaml
notmahi's picture
Upload folder using huggingface_hub
cf6e179 verified
raw
history blame
2.56 kB
resume: false
device: cuda
use_amp: false
seed: 100000
dataset_repo_id: notmahi/tutorial-ball
video_backend: pyav
training:
offline_steps: 100000
online_steps: 0
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: ???
eval_freq: 10000
log_freq: 250
save_checkpoint: true
save_freq: 5000
num_workers: 4
batch_size: 128
image_transforms:
enable: false
max_num_transforms: 3
random_order: false
brightness:
weight: 1
min_max:
- 0.8
- 1.2
contrast:
weight: 1
min_max:
- 0.8
- 1.2
saturation:
weight: 1
min_max:
- 0.5
- 1.5
hue:
weight: 1
min_max:
- -0.05
- 0.05
sharpness:
weight: 1
min_max:
- 0.8
- 1.2
grad_clip_norm: 10
lr: 0.0001
lr_scheduler: cosine
lr_warmup_steps: 500
adam_betas:
- 0.95
- 0.999
adam_eps: 1.0e-08
adam_weight_decay: 1.0e-06
vqvae_lr: 0.001
n_vqvae_training_steps: 20000
bet_weight_decay: 0.0002
bet_learning_rate: 5.5e-05
bet_betas:
- 0.9
- 0.999
delta_timestamps:
observation.state:
- -0.016666666666666666
- 0.0
action:
- -0.016666666666666666
- 0.0
- 0.016666666666666666
- 0.03333333333333333
- 0.05
eval:
n_episodes: 10
batch_size: 10
use_async_envs: false
wandb:
enable: true
disable_artifact: false
project: lerobot
notes: ''
fps: 60
env:
name: ballgame
task: Ballgame-v0
state_dim: 4
action_dim: 2
fps: ${fps}
episode_length: 1000
gym:
fps: ${fps}
obs_type: pixels_agent_pos
timeout: 1000
policy:
name: vqbet
n_obs_steps: 2
n_action_pred_token: 3
action_chunk_size: 2
input_shapes:
observation.state:
- ${env.state_dim}
output_shapes:
action:
- ${env.action_dim}
input_normalization_modes:
observation.state: min_max
output_normalization_modes:
action: min_max
vision_backbone: resnet18
crop_shape:
- 84
- 84
crop_is_random: true
pretrained_backbone_weights: null
use_group_norm: true
spatial_softmax_num_keypoints: 32
n_vqvae_training_steps: ${training.n_vqvae_training_steps}
vqvae_n_embed: 16
vqvae_embedding_dim: 32
vqvae_enc_hidden_dim: 64
gpt_block_size: 500
gpt_input_dim: 128
gpt_output_dim: 128
gpt_n_layer: 4
gpt_n_head: 4
gpt_hidden_dim: 256
dropout: 0.1
mlp_hidden_dim: 128
offset_loss_weight: 100.0
primary_code_loss_weight: 5.0
secondary_code_loss_weight: 0.5
bet_softmax_temperature: 1.0
sequentially_select: true