resume: false device: cuda use_amp: false seed: 100000 dataset_repo_id: notmahi/tutorial-ball video_backend: pyav training: offline_steps: 100000 online_steps: 0 online_steps_between_rollouts: 1 online_sampling_ratio: 0.5 online_env_seed: ??? eval_freq: 10000 log_freq: 250 save_checkpoint: true save_freq: 5000 num_workers: 4 batch_size: 128 image_transforms: enable: false max_num_transforms: 3 random_order: false brightness: weight: 1 min_max: - 0.8 - 1.2 contrast: weight: 1 min_max: - 0.8 - 1.2 saturation: weight: 1 min_max: - 0.5 - 1.5 hue: weight: 1 min_max: - -0.05 - 0.05 sharpness: weight: 1 min_max: - 0.8 - 1.2 grad_clip_norm: 10 lr: 0.0001 lr_scheduler: cosine lr_warmup_steps: 500 adam_betas: - 0.95 - 0.999 adam_eps: 1.0e-08 adam_weight_decay: 1.0e-06 vqvae_lr: 0.001 n_vqvae_training_steps: 20000 bet_weight_decay: 0.0002 bet_learning_rate: 5.5e-05 bet_betas: - 0.9 - 0.999 delta_timestamps: observation.state: - -0.016666666666666666 - 0.0 action: - -0.016666666666666666 - 0.0 - 0.016666666666666666 - 0.03333333333333333 - 0.05 eval: n_episodes: 10 batch_size: 10 use_async_envs: false wandb: enable: true disable_artifact: false project: lerobot notes: '' fps: 60 env: name: ballgame task: Ballgame-v0 state_dim: 4 action_dim: 2 fps: ${fps} episode_length: 1000 gym: fps: ${fps} obs_type: pixels_agent_pos timeout: 1000 policy: name: vqbet n_obs_steps: 2 n_action_pred_token: 3 action_chunk_size: 2 input_shapes: observation.state: - ${env.state_dim} output_shapes: action: - ${env.action_dim} input_normalization_modes: observation.state: min_max output_normalization_modes: action: min_max vision_backbone: resnet18 crop_shape: - 84 - 84 crop_is_random: true pretrained_backbone_weights: null use_group_norm: true spatial_softmax_num_keypoints: 32 n_vqvae_training_steps: ${training.n_vqvae_training_steps} vqvae_n_embed: 16 vqvae_embedding_dim: 32 vqvae_enc_hidden_dim: 64 gpt_block_size: 500 gpt_input_dim: 128 gpt_output_dim: 128 gpt_n_layer: 4 gpt_n_head: 4 gpt_hidden_dim: 256 dropout: 0.1 mlp_hidden_dim: 128 offset_loss_weight: 100.0 primary_code_loss_weight: 5.0 secondary_code_loss_weight: 0.5 bet_softmax_temperature: 1.0 sequentially_select: true