Commit
•
d24b6e0
1
Parent(s):
060d6a9
add eval script
Browse files- .ipynb_checkpoints/README-checkpoint.md +40 -2
- .ipynb_checkpoints/eval-checkpoint.py +141 -0
- README.md +27 -1
- eval.py +141 -0
.ipynb_checkpoints/README-checkpoint.md
CHANGED
@@ -1,12 +1,32 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
datasets:
|
6 |
- common_voice
|
7 |
model-index:
|
8 |
- name: wav2vec2-xls-r-300m-ar
|
9 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -14,7 +34,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# wav2vec2-xls-r-300m-ar
|
16 |
|
17 |
-
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -49,3 +77,13 @@ The following hyperparameters were used during training:
|
|
49 |
- Pytorch 1.10.2+cu102
|
50 |
- Datasets 1.18.2.dev0
|
51 |
- Tokenizers 0.11.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ar
|
4 |
license: apache-2.0
|
5 |
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- common_voice
|
8 |
- generated_from_trainer
|
9 |
+
- sv
|
10 |
+
- robust-speech-event
|
11 |
datasets:
|
12 |
- common_voice
|
13 |
model-index:
|
14 |
- name: wav2vec2-xls-r-300m-ar
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Robust Speech Event - Dev Data
|
21 |
+
type: speech-recognition-community-v2/dev_data
|
22 |
+
args: ar
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 1.0
|
27 |
+
- name: Test CER
|
28 |
+
type: cer
|
29 |
+
value: 1.0
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
34 |
|
35 |
# wav2vec2-xls-r-300m-ar
|
36 |
|
37 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - AR dataset.
|
38 |
+
It achieves the following results on the evaluation set:
|
39 |
+
- eval_loss: 3.0191
|
40 |
+
- eval_wer: 1.0
|
41 |
+
- eval_runtime: 252.2389
|
42 |
+
- eval_samples_per_second: 30.217
|
43 |
+
- eval_steps_per_second: 0.476
|
44 |
+
- epoch: 1.0
|
45 |
+
- step: 340
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
77 |
- Pytorch 1.10.2+cu102
|
78 |
- Datasets 1.18.2.dev0
|
79 |
- Tokenizers 0.11.0
|
80 |
+
|
81 |
+
#### Evaluation Commands
|
82 |
+
|
83 |
+
Please use the evaluation script `eval.py` included in the repo.
|
84 |
+
|
85 |
+
1. To evaluate on `speech-recognition-community-v2/dev_data`
|
86 |
+
|
87 |
+
```bash
|
88 |
+
python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0
|
89 |
+
```
|
.ipynb_checkpoints/eval-checkpoint.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor
|
4 |
+
import re
|
5 |
+
import argparse
|
6 |
+
import unicodedata
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
|
10 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
11 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
12 |
+
|
13 |
+
log_outputs = args.log_outputs
|
14 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
15 |
+
|
16 |
+
# load metric
|
17 |
+
wer = load_metric("wer")
|
18 |
+
cer = load_metric("cer")
|
19 |
+
|
20 |
+
# compute metrics
|
21 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
23 |
+
|
24 |
+
# print & log results
|
25 |
+
result_str = (
|
26 |
+
f"WER: {wer_result}\n"
|
27 |
+
f"CER: {cer_result}"
|
28 |
+
)
|
29 |
+
print(result_str)
|
30 |
+
|
31 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
32 |
+
f.write(result_str)
|
33 |
+
|
34 |
+
# log all results in text file. Possibly interesting for analysis
|
35 |
+
if log_outputs is not None:
|
36 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
37 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
38 |
+
|
39 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
40 |
+
|
41 |
+
# mapping function to write output
|
42 |
+
def write_to_file(batch, i):
|
43 |
+
p.write(f"{i}" + "\n")
|
44 |
+
p.write(batch["prediction"] + "\n")
|
45 |
+
t.write(f"{i}" + "\n")
|
46 |
+
t.write(batch["target"] + "\n")
|
47 |
+
|
48 |
+
result.map(write_to_file, with_indices=True)
|
49 |
+
|
50 |
+
|
51 |
+
# Normalize arabic
|
52 |
+
def normalizeArabic(text):
|
53 |
+
# https://alraqmiyyat.github.io/2013/01-02.html
|
54 |
+
text = re.sub("[إأٱآا]", "ا", text)
|
55 |
+
text = re.sub("ى", "ي", text)
|
56 |
+
text = re.sub("ؤ", "ء", text)
|
57 |
+
text = re.sub("ئ", "ء", text)
|
58 |
+
|
59 |
+
# keep only characters which unicode \u0600-\u06FF and space
|
60 |
+
text = re.sub(r"[^\u0600-\u06FF ]", "", text)
|
61 |
+
return text
|
62 |
+
|
63 |
+
def normalize_text(text: str) -> str:
|
64 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
65 |
+
|
66 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
67 |
+
|
68 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
69 |
+
|
70 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
71 |
+
# note that order is important here!
|
72 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
73 |
+
|
74 |
+
for t in token_sequences_to_ignore:
|
75 |
+
text = " ".join(text.split(t))
|
76 |
+
|
77 |
+
text = normalizeArabic(text)
|
78 |
+
|
79 |
+
return text
|
80 |
+
|
81 |
+
|
82 |
+
def main(args):
|
83 |
+
# load dataset
|
84 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
85 |
+
|
86 |
+
# for testing: only process the first two examples as a test
|
87 |
+
# dataset = dataset.select(range(10))
|
88 |
+
|
89 |
+
# load processor
|
90 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
91 |
+
sampling_rate = feature_extractor.sampling_rate
|
92 |
+
|
93 |
+
# resample audio
|
94 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
95 |
+
|
96 |
+
# load eval pipeline
|
97 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
98 |
+
|
99 |
+
# map function to decode audio
|
100 |
+
def map_to_pred(batch):
|
101 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
102 |
+
|
103 |
+
batch["prediction"] = prediction["text"]
|
104 |
+
batch["target"] = normalize_text(batch["sentence"])
|
105 |
+
return batch
|
106 |
+
|
107 |
+
# run inference on all examples
|
108 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
109 |
+
|
110 |
+
# compute and log_results
|
111 |
+
# do not change function below
|
112 |
+
log_results(result, args)
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
parser = argparse.ArgumentParser()
|
117 |
+
|
118 |
+
parser.add_argument(
|
119 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
120 |
+
)
|
121 |
+
parser.add_argument(
|
122 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
123 |
+
)
|
124 |
+
parser.add_argument(
|
125 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
126 |
+
)
|
127 |
+
parser.add_argument(
|
128 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
132 |
+
)
|
133 |
+
parser.add_argument(
|
134 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
138 |
+
)
|
139 |
+
args = parser.parse_args()
|
140 |
+
|
141 |
+
main(args)
|
README.md
CHANGED
@@ -6,11 +6,27 @@ tags:
|
|
6 |
- automatic-speech-recognition
|
7 |
- common_voice
|
8 |
- generated_from_trainer
|
|
|
|
|
9 |
datasets:
|
10 |
- common_voice
|
11 |
model-index:
|
12 |
- name: wav2vec2-xls-r-300m-ar
|
13 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -61,3 +77,13 @@ The following hyperparameters were used during training:
|
|
61 |
- Pytorch 1.10.2+cu102
|
62 |
- Datasets 1.18.2.dev0
|
63 |
- Tokenizers 0.11.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- automatic-speech-recognition
|
7 |
- common_voice
|
8 |
- generated_from_trainer
|
9 |
+
- sv
|
10 |
+
- robust-speech-event
|
11 |
datasets:
|
12 |
- common_voice
|
13 |
model-index:
|
14 |
- name: wav2vec2-xls-r-300m-ar
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Robust Speech Event - Dev Data
|
21 |
+
type: speech-recognition-community-v2/dev_data
|
22 |
+
args: ar
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 1.0
|
27 |
+
- name: Test CER
|
28 |
+
type: cer
|
29 |
+
value: 1.0
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
77 |
- Pytorch 1.10.2+cu102
|
78 |
- Datasets 1.18.2.dev0
|
79 |
- Tokenizers 0.11.0
|
80 |
+
|
81 |
+
#### Evaluation Commands
|
82 |
+
|
83 |
+
Please use the evaluation script `eval.py` included in the repo.
|
84 |
+
|
85 |
+
1. To evaluate on `speech-recognition-community-v2/dev_data`
|
86 |
+
|
87 |
+
```bash
|
88 |
+
python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0
|
89 |
+
```
|
eval.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor
|
4 |
+
import re
|
5 |
+
import argparse
|
6 |
+
import unicodedata
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
|
10 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
11 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
12 |
+
|
13 |
+
log_outputs = args.log_outputs
|
14 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
15 |
+
|
16 |
+
# load metric
|
17 |
+
wer = load_metric("wer")
|
18 |
+
cer = load_metric("cer")
|
19 |
+
|
20 |
+
# compute metrics
|
21 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
23 |
+
|
24 |
+
# print & log results
|
25 |
+
result_str = (
|
26 |
+
f"WER: {wer_result}\n"
|
27 |
+
f"CER: {cer_result}"
|
28 |
+
)
|
29 |
+
print(result_str)
|
30 |
+
|
31 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
32 |
+
f.write(result_str)
|
33 |
+
|
34 |
+
# log all results in text file. Possibly interesting for analysis
|
35 |
+
if log_outputs is not None:
|
36 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
37 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
38 |
+
|
39 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
40 |
+
|
41 |
+
# mapping function to write output
|
42 |
+
def write_to_file(batch, i):
|
43 |
+
p.write(f"{i}" + "\n")
|
44 |
+
p.write(batch["prediction"] + "\n")
|
45 |
+
t.write(f"{i}" + "\n")
|
46 |
+
t.write(batch["target"] + "\n")
|
47 |
+
|
48 |
+
result.map(write_to_file, with_indices=True)
|
49 |
+
|
50 |
+
|
51 |
+
# Normalize arabic
|
52 |
+
def normalizeArabic(text):
|
53 |
+
# https://alraqmiyyat.github.io/2013/01-02.html
|
54 |
+
text = re.sub("[إأٱآا]", "ا", text)
|
55 |
+
text = re.sub("ى", "ي", text)
|
56 |
+
text = re.sub("ؤ", "ء", text)
|
57 |
+
text = re.sub("ئ", "ء", text)
|
58 |
+
|
59 |
+
# keep only characters which unicode \u0600-\u06FF and space
|
60 |
+
text = re.sub(r"[^\u0600-\u06FF ]", "", text)
|
61 |
+
return text
|
62 |
+
|
63 |
+
def normalize_text(text: str) -> str:
|
64 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
65 |
+
|
66 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
67 |
+
|
68 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
69 |
+
|
70 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
71 |
+
# note that order is important here!
|
72 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
73 |
+
|
74 |
+
for t in token_sequences_to_ignore:
|
75 |
+
text = " ".join(text.split(t))
|
76 |
+
|
77 |
+
text = normalizeArabic(text)
|
78 |
+
|
79 |
+
return text
|
80 |
+
|
81 |
+
|
82 |
+
def main(args):
|
83 |
+
# load dataset
|
84 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
85 |
+
|
86 |
+
# for testing: only process the first two examples as a test
|
87 |
+
# dataset = dataset.select(range(10))
|
88 |
+
|
89 |
+
# load processor
|
90 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
91 |
+
sampling_rate = feature_extractor.sampling_rate
|
92 |
+
|
93 |
+
# resample audio
|
94 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
95 |
+
|
96 |
+
# load eval pipeline
|
97 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
98 |
+
|
99 |
+
# map function to decode audio
|
100 |
+
def map_to_pred(batch):
|
101 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
102 |
+
|
103 |
+
batch["prediction"] = prediction["text"]
|
104 |
+
batch["target"] = normalize_text(batch["sentence"])
|
105 |
+
return batch
|
106 |
+
|
107 |
+
# run inference on all examples
|
108 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
109 |
+
|
110 |
+
# compute and log_results
|
111 |
+
# do not change function below
|
112 |
+
log_results(result, args)
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
parser = argparse.ArgumentParser()
|
117 |
+
|
118 |
+
parser.add_argument(
|
119 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
120 |
+
)
|
121 |
+
parser.add_argument(
|
122 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
123 |
+
)
|
124 |
+
parser.add_argument(
|
125 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
126 |
+
)
|
127 |
+
parser.add_argument(
|
128 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
132 |
+
)
|
133 |
+
parser.add_argument(
|
134 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
138 |
+
)
|
139 |
+
args = parser.parse_args()
|
140 |
+
|
141 |
+
main(args)
|