WavTokenizer-medium-speech-75token
/
wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
seed_everything: 3407 | |
data: | |
class_path: decoder.dataset.VocosDataModule | |
init_args: | |
train_params: | |
filelist_path: ./WavTokenizer/data/train/example_train | |
sampling_rate: 24000 | |
num_samples: 72000 | |
batch_size: 40 # 20 | |
num_workers: 8 | |
val_params: | |
filelist_path: ./WavTokenizer/data/infer/example_val | |
sampling_rate: 24000 | |
num_samples: 72000 | |
batch_size: 5 # 10 | |
num_workers: 8 | |
model: | |
class_path: decoder.experiment.WavTokenizer | |
init_args: | |
sample_rate: 24000 | |
initial_learning_rate: 2e-4 | |
mel_loss_coeff: 45 | |
mrd_loss_coeff: 1.0 | |
num_warmup_steps: 0 # Optimizers warmup steps | |
pretrain_mel_steps: 0 # 0 means GAN objective from the first iteration | |
# automatic evaluation | |
evaluate_utmos: true | |
evaluate_pesq: true | |
evaluate_periodicty: true | |
resume: false | |
resume_config: ./WavTokenizer/configs/wavtokenizer_smalldata_frame75_3s_nq1_code16384_dim512_kmeans800_attn.yaml | |
resume_model: ./WavTokenizer/result/train/wavtokenizer_smalldata_frame75_3s_nq1_code16384_dim512_kmeans800_attn/xxx.ckpt | |
feature_extractor: | |
class_path: decoder.feature_extractors.EncodecFeatures | |
init_args: | |
encodec_model: encodec_24khz | |
bandwidths: [6.6, 6.6, 6.6, 6.6] | |
train_codebooks: true | |
num_quantizers: 1 | |
dowmsamples: [8, 5, 4, 2] | |
vq_bins: 4096 | |
vq_kmeans: 200 | |
backbone: | |
class_path: decoder.models.VocosBackbone | |
init_args: | |
input_channels: 512 | |
dim: 768 | |
intermediate_dim: 2304 | |
num_layers: 12 | |
adanorm_num_embeddings: 4 | |
head: | |
class_path: decoder.heads.ISTFTHead | |
init_args: | |
dim: 768 | |
n_fft: 1280 | |
hop_length: 320 | |
padding: same | |
trainer: | |
logger: | |
class_path: pytorch_lightning.loggers.TensorBoardLogger | |
init_args: | |
save_dir: ./WavTokenizer/result/train/example/ | |
callbacks: | |
- class_path: pytorch_lightning.callbacks.LearningRateMonitor | |
- class_path: pytorch_lightning.callbacks.ModelSummary | |
init_args: | |
max_depth: 2 | |
- class_path: pytorch_lightning.callbacks.ModelCheckpoint | |
init_args: | |
monitor: val_loss | |
filename: wavtokenizer_checkpoint_{epoch}_{step}_{val_loss:.4f} | |
save_top_k: 10 | |
save_last: true | |
- class_path: decoder.helpers.GradNormCallback | |
# Lightning calculates max_steps across all optimizer steps (rather than number of batches) | |
# This equals to 1M steps per generator and 1M per discriminator | |
max_steps: 20000000 | |
# You might want to limit val batches when evaluating all the metrics, as they are time-consuming | |
limit_val_batches: 100 | |
accelerator: gpu | |
strategy: ddp | |
devices: [0,1,2,3,4,5,6,7] | |
log_every_n_steps: 1000 | |