File size: 5,622 Bytes
c3769a8
 
 
 
 
 
 
 
 
1c26931
9789e02
1c26931
 
 
 
 
9789e02
1c26931
 
 
9789e02
1c26931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9789e02
 
1c26931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
license: mit
tags:
- codec
- speech-language-models
- text-to-speech
- gpt4-o
- tokenizer
- codec-representation
---
# WavTokenizer: SOTA Discrete Codec Models With Forty Tokens Per Second for Audio Language Modeling 



[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://github.com/jishengpeng/wavtokenizer)
[![demo](https://img.shields.io/badge/WanTokenizer-Demo-red)](https://wavtokenizer.github.io/)
[![model](https://img.shields.io/badge/%F0%9F%A4%97%20WavTokenizer-Models-blue)](https://huggingface.co/novateur/WavTokenizer)



### πŸŽ‰πŸŽ‰ with WavTokenizer, you can represent speech, music, and audio with only 40 tokens per second!
### πŸŽ‰πŸŽ‰ with WavTokenizer, You can get strong reconstruction results.
### πŸŽ‰πŸŽ‰ WavTokenizer owns rich semantic information and is build for audio language models such as GPT4-o.

# πŸ”₯ News
- *2024.08*: We release WavTokenizer on arxiv.

![result](result.png)


## Installation

To use WavTokenizer, install it using:

```bash
conda create -n wavtokenizer python=3.9
conda activate wavtokenizer
pip install -r requirements.txt
```

## Infer

### Part1: Reconstruct audio from raw wav

```python

from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer


device=torch.device('cpu')

config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"
audio_outpath = "xxx"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)


wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1) 
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
features,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id) 
torchaudio.save(audio_outpath, audio_out, sample_rate=24000, encoding='PCM_S', bits_per_sample=16)
```


### Part2: Generating discrete codecs
```python

from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer

device=torch.device('cpu')

config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)

wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1) 
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
_,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
print(discrete_code)
```



### Part3: Audio reconstruction through codecs
```python
# audio_tokens [n_q,1,t]/[n_q,t]
features = wavtokenizer.codes_to_features(audio_tokens)
bandwidth_id = torch.tensor([0])  
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)
```

## Available models
πŸ€— links to the Huggingface model hub.

| Model name                                                          |                                                                                                            HuggingFace                                                                                                             |  Corpus  |  aa  | Parameters | Open-Source |
|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:---------:|:----------:|:------:|
| WavTokenizer-small-600-24k-4096             |             [πŸ€—](https://huggingface.co/novateur/WavTokenizer/blob/main/WavTokenizer_small_600_24k_4096.ckpt)    | LibriTTS  | 40  |  Speech  | √ |
| WavTokenizer-small-320-24k-4096             |             [πŸ€—](https://huggingface.co/novateur/WavTokenizer/blob/main/WavTokenizer_small_320_24k_4096.ckpt)     | LibriTTS  | 75 |  Speech  | √|
| WavTokenizer-medium-600-24k-4096               |               [πŸ€—](https://github.com/jishengpeng/wavtokenizer)         | 10000 Hours | 40  |  Speech, Audio, Music  | Coming Soon|
| WavTokenizer-medium-320-24k-4096                 |               [πŸ€—](https://github.com/jishengpeng/wavtokenizer)         | 10000 Hours | 75 |  Speech, Audio, Music  | Coming Soon|
| WavTokenizer-large-600-24k-4096 | [πŸ€—](https://github.com/jishengpeng/wavtokenizer) | LibriTTS | 40 |   Speech, Audio, Music   | Coming Soon|
| WavTokenizer-large-320-24k-4096   | [πŸ€—](https://github.com/jishengpeng/wavtokenizer) | 80000 Hours | 75 |   Speech, Audio, Music   | Comming Soon |

      

## Training

### Step1: Prepare train dataset
```python
# Process the data into a form similar to ./data/demo.txt
```

### Step2: Modifying configuration files
```python
# ./configs/xxx.yaml
# Modify the values of parameters such as batch_size, filelist_path, save_dir, device
```

### Step3: Start training process
Refer to [Pytorch Lightning documentation](https://lightning.ai/docs/pytorch/stable/) for details about customizing the
training pipeline.

```bash
cd ./WavTokenizer
python train.py fit --config ./configs/xxx.yaml
```


## Citation

If this code contributes to your research, please cite our work, Language-Codec and WavTokenizer:

```
@misc{ji2024languagecodec,
      title={Language-Codec: Reducing the Gaps Between Discrete Codec Representation and Speech Language Models}, 
      author={Shengpeng Ji and Minghui Fang and Ziyue Jiang and Rongjie Huang and Jialung Zuo and Shulei Wang and Zhou Zhao},
      year={2024},
      eprint={2402.12208},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
```