npit commited on
Commit
9c6ac8d
·
1 Parent(s): fd56fa4

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1253.66 +/- 117.20
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1552f8af5463a4728acb499b882aefb7412366b26655b667c2ec58070d44e60
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e6b0a43a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e6b0a4430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e6b0a44c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e6b0a4550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5e6b0a45e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5e6b0a4670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e6b0a4700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e6b0a4790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5e6b0a4820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e6b0a48b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e6b0a4940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e6b0a49d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5e6b0a39c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678653344016556520,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIOR4z8+q+670yEBPzl5LD2jTGtAGdQxP1U5YD+MPP0+U3cePttV476g9g1AEbggv3Qd+7t0+2pAfqgWwI8qkD5LYaY/JHeWP16uFr+UhMy/tc6bP5XhBsA5GApAhioCvbGLgL9yCAvAqYFZwMp6Fj+FEZg/49tJP0g+Vr6PhXk/5D/Vv2Z0ZLzzQfE+8e5FPxOs+r5LH/i/ST/NP+4l1T5ZGEW/EUdUwJoyF8D1O2U95v7NPtsBgMA5+Zm/c4qEvRcO0z8OHp+9+oCBv7NIGb7N6X4/X6/rPiinlj7Lwdm/pyuzP533kL4p0CA/fbiwPzu6/z9HmZI/iYijPwLjG78OiLM+FBUWOzLcBz8bUvi+8HOKP4cVwz8McY+/bPGIP7C9MT9kF2M/GfgqP3g4ozwXmRE/5pAtv3chkD8KBFY+sYuAv1+v6z4op5Y+ynoWPybhmT+VAAA/N+75PT0P2z1rThc/lk8QQPkEMryaoLM/snh6voDAhD6Z0Uc+1ulWQIXsBT3J5Bi/tY3Pv5PQ2z41eMY/crWhvSi/CMCMx4PA8pTTPzkr/rrx1cE9PhYIPrGLgL9fr+s+KKeWPsvB2b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoVI22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATrLQPQAAAADnhOW/AAAAAMs+w70AAAAAwSL2PwAAAABvnc09AAAAAJ004D8AAAAApFOqPQAAAAA42gDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwbflNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHcknTwAAAAAy8buvwAAAADE+5A8AAAAAHaN6j8AAAAAhX7dvAAAAABNktw/AAAAAA2P3L0AAAAA/onzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF1KDbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAkViw9AAAAANV3/L8AAAAAlFvivQAAAAA3M+k/AAAAAL2oHb0AAAAAOEz5PwAAAACJF8y9AAAAAGmV478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6zm22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6s+mPQAAAADyhuW/AAAAAIkOl70AAAAAlN3kPwAAAACQqVi9AAAAAEizAEAAAAAA7I1hvQAAAACjhve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk8pwZOzpqMAWyUTegDjAF0lEdArPF4nc+JQHV9lChoBkdAmMNQC0WuYGgHTegDaAhHQKzy4wGnn+11fZQoaAZHQJqo1hc7hehoB03oA2gIR0Cs9ItfgJkYdX2UKGgGR0CZVt2LpA2RaAdN6ANoCEdArPYoJ1JUYXV9lChoBkdAmznI3rD632gHTegDaAhHQKz+F93r2QJ1fZQoaAZHQJdLseHSF49oB03oA2gIR0Cs/4Xlr/KhdX2UKGgGR0CZMWzDGcWkaAdN6ANoCEdArQE07nxJ/XV9lChoBkdAlqF0XpGFz2gHTegDaAhHQK0C7GIbfgt1fZQoaAZHQJbnW4YrJ8xoB03oA2gIR0CtEKWluWKNdX2UKGgGR0CWFnxA0KqoaAdN6ANoCEdArRLIhOgxrXV9lChoBkdAlQOzw+dK/WgHTegDaAhHQK0U5xc3VCp1fZQoaAZHQJinyBe5WiloB03oA2gIR0CtFoZle4TcdX2UKGgGR0CUpBzzErGzaAdN6ANoCEdArR64J7b+LnV9lChoBkdAlYqEdzXBg2gHTegDaAhHQK0gIM3qAz51fZQoaAZHQJPlxjurp7loB03oA2gIR0CtIcrYXfqHdX2UKGgGR0CVlLkQPI4maAdN6ANoCEdArSNq3iJfpnV9lChoBkdAl0qhPTG5tmgHTegDaAhHQK0tMGyon8d1fZQoaAZHQJbGJgJC0F9oB03oA2gIR0CtL2ZFgDzRdX2UKGgGR0CS49iu+yquaAdN6ANoCEdArTHErAgxJ3V9lChoBkdAlNtNKNAC4mgHTegDaAhHQK0zWfV7QcB1fZQoaAZHQJMgqjynUDxoB03oA2gIR0CtO25Grjo7dX2UKGgGR0CVSdazNUwSaAdN6ANoCEdArTzd+G47R3V9lChoBkdAlvBwbuMMqmgHTegDaAhHQK0+fDKoybh1fZQoaAZHQJN1TvAoG6hoB03oA2gIR0CtQCVWKdhBdX2UKGgGR0CX55N0eU6gaAdN6ANoCEdArUl12LYPG3V9lChoBkdAkt9fR7Z392gHTegDaAhHQK1LmJ7b+Lp1fZQoaAZHQJWKxLM9r45oB03oA2gIR0CtTinF5v9+dX2UKGgGR0CX8HTOgQHzaAdN6ANoCEdArU/wTEit73V9lChoBkdAl4D4XKr7wmgHTegDaAhHQK1bF9m6Gxl1fZQoaAZHQJZE3rs0HhVoB03oA2gIR0CtXIU7Sy+pdX2UKGgGR0CXnYynUDuCaAdN6ANoCEdArV4yUkfLcXV9lChoBkdAlIjVKbrkbWgHTegDaAhHQK1f1RQaaTh1fZQoaAZHQJjS+F23azxoB03oA2gIR0CtaoZ/Tb35dX2UKGgGR0CXgQyMDOkdaAdN6ANoCEdArWyNNHpbEHV9lChoBkdAmLk08zQ/o2gHTegDaAhHQK1uStapxWF1fZQoaAZHQJXjYAU+LWJoB03oA2gIR0Ctb+axoqTbdX2UKGgGR0CYr8cD8tPIaAdN6ANoCEdArXgdYlpoK3V9lChoBkdAl6KfmozeoGgHTegDaAhHQK15nXS0BwN1fZQoaAZHQJWstepn6EdoB03oA2gIR0Cte0slLOAzdX2UKGgGR0CYTzEl3QlbaAdN6ANoCEdArXzlwgkkbHV9lChoBkdAlDLXKnvUjWgHTegDaAhHQK2HTCojv/l1fZQoaAZHQJWrI8jiXIFoB03oA2gIR0CtiW3B55Z9dX2UKGgGR0CVgs2MKkVOaAdN6ANoCEdArYsjcuanaXV9lChoBkdAlqt0KiO/+WgHTegDaAhHQK2MvvmYBvJ1fZQoaAZHQJbd9gVoHs1oB03oA2gIR0CtlOUEPlMidX2UKGgGR0CX1GCVbA1vaAdN6ANoCEdArZZG01IiDHV9lChoBkdAlkiVJUYKpmgHTegDaAhHQK2X+lC1JDp1fZQoaAZHQJco7WVeKKpoB03oA2gIR0CtmZudGy5adX2UKGgGR0CYmdhW5paiaAdN6ANoCEdAraSLJSzgM3V9lChoBkdAmWazriVB2WgHTegDaAhHQK2m6sQumJp1fZQoaAZHQJeqvNdJJ5FoB03oA2gIR0CtqZnctXgcdX2UKGgGR0CZNACa7VawaAdN6ANoCEdAraxEgMc6vXV9lChoBkdAmlT1SOzY3GgHTegDaAhHQK21NrftQbd1fZQoaAZHQJnF31Iy0rtoB03oA2gIR0Cttp8NH6MzdX2UKGgGR0CbKX9yLhrFaAdN6ANoCEdArbhMUAT7EnV9lChoBkdAmVzskUsWf2gHTegDaAhHQK255WPLgXN1fZQoaAZHQJaxqIeo1k1oB03oA2gIR0CtwpkJa7mMdX2UKGgGR0CV5Cs+3YthaAdN6ANoCEdArcSt3IMjNnV9lChoBkdAmCzGXb/OuGgHTegDaAhHQK3HUPOIInl1fZQoaAZHQJgTEQ/X5FhoB03oA2gIR0Ctyci/O+qSdX2UKGgGR0CairEKmbb2aAdN6ANoCEdArdIMc81XNnV9lChoBkdAmG+mll9SdmgHTegDaAhHQK3TdJyyUs51fZQoaAZHQJlUF9x6v7poB03oA2gIR0Ct1TLPD50sdX2UKGgGR0CZjPDNQj2SaAdN6ANoCEdArdbag00m+nV9lChoBkdAmdQ/pdKNAGgHTegDaAhHQK3fbo6jnFJ1fZQoaAZHQJhEzENvwVloB03oA2gIR0Ct4YFxn3+NdX2UKGgGR0CYDO8/2TPjaAdN6ANoCEdAreQlvS+g13V9lChoBkdAmTwlm4Ajp2gHTegDaAhHQK3mpZr56+p1fZQoaAZHQJnsYNPP9k1oB03oA2gIR0Ct7zpnQID6dX2UKGgGR0CYF7KF7D2raAdN6ANoCEdArfED7ALy+nV9lChoBkdAmXP8mjTKDGgHTegDaAhHQK3zfVWjoIR1fZQoaAZHQJoMD029+PRoB03oA2gIR0Ct9gPF3pwCdX2UKGgGR0CY72fra/RFaAdN6ANoCEdArgDuNJe3QXV9lChoBkdAmstEUO/cnGgHTegDaAhHQK4DIeHSF491fZQoaAZHQJ0UmI7/4qRoB03oA2gIR0CuBYHDJlredX2UKGgGR0CZzF1cMVk+aAdN6ANoCEdArgcqS9ugpXV9lChoBkdAnBCwFPi1iWgHTegDaAhHQK4POBT4tYl1fZQoaAZHQJqtZP/JeVtoB03oA2gIR0CuEKazNUwSdX2UKGgGR0CcSuSqlxffaAdN6ANoCEdArhJOnTAnD3V9lChoBkdAlghqVdHDrWgHTegDaAhHQK4T4UHpr1x1fZQoaAZHQJc51+hGpddoB03oA2gIR0CuHU8s189fdX2UKGgGR0CbpdGOdXkpaAdN6ANoCEdArh92nGbTdHV9lChoBkdAltU+wTufEmgHTegDaAhHQK4h/zyz5XV1fZQoaAZHQJTHZroGIKtoB03oA2gIR0CuI6RNIsiCdX2UKGgGR0CX97qQA+6iaAdN6ANoCEdAriu6BbwBo3V9lChoBkdAmCGDhDPWx2gHTegDaAhHQK4tJqAz5451fZQoaAZHQJVShjwx33ZoB03oA2gIR0CuLsqtPpIMdX2UKGgGR0CZSMFzuF6BaAdN6ANoCEdArjB1f7aZhXV9lChoBkdAmnuRDgIhQmgHTegDaAhHQK45hu1F6Rh1fZQoaAZHQJhBB7TlT3toB03oA2gIR0CuO6jYh+vydX2UKGgGR0CXq76I3zczaAdN6ANoCEdArj48xj8UEnV9lChoBkdAmCpz2i+L32gHTegDaAhHQK5A5NFjNIN1fZQoaAZHQJesz1UVBUtoB03oA2gIR0CuS3VinYQKdX2UKGgGR0CYsK4+8oQWaAdN6ANoCEdArkzgy9EkSnV9lChoBkdAlj3BxLkCFWgHTegDaAhHQK5Oid4mkWR1fZQoaAZHQJkwkFX7tRhoB03oA2gIR0CuUCImPYFrdX2UKGgGR0CZUeQ8OkLyaAdN6ANoCEdArlpau6mO2nV9lChoBkdAlY+HmaH9FWgHTegDaAhHQK5chK2a2F51fZQoaAZHQJfsXPw/gR9oB03oA2gIR0CuXnChWYF8dX2UKGgGR0CZsKtTkyULaAdN6ANoCEdArmAFRLsa9HVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5d7f097464a22509534205ee3d7f4f71c641a62a69400c03b5ddd0c09d2aa6a
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e26f12a6e156926cef4ca7db17ce71ffa8fb690e35828be6496536d3e80e5db
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e6b0a43a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e6b0a4430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e6b0a44c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e6b0a4550>", "_build": "<function ActorCriticPolicy._build at 0x7f5e6b0a45e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e6b0a4670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e6b0a4700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e6b0a4790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e6b0a4820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e6b0a48b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e6b0a4940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e6b0a49d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5e6b0a39c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678653344016556520, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIOR4z8+q+670yEBPzl5LD2jTGtAGdQxP1U5YD+MPP0+U3cePttV476g9g1AEbggv3Qd+7t0+2pAfqgWwI8qkD5LYaY/JHeWP16uFr+UhMy/tc6bP5XhBsA5GApAhioCvbGLgL9yCAvAqYFZwMp6Fj+FEZg/49tJP0g+Vr6PhXk/5D/Vv2Z0ZLzzQfE+8e5FPxOs+r5LH/i/ST/NP+4l1T5ZGEW/EUdUwJoyF8D1O2U95v7NPtsBgMA5+Zm/c4qEvRcO0z8OHp+9+oCBv7NIGb7N6X4/X6/rPiinlj7Lwdm/pyuzP533kL4p0CA/fbiwPzu6/z9HmZI/iYijPwLjG78OiLM+FBUWOzLcBz8bUvi+8HOKP4cVwz8McY+/bPGIP7C9MT9kF2M/GfgqP3g4ozwXmRE/5pAtv3chkD8KBFY+sYuAv1+v6z4op5Y+ynoWPybhmT+VAAA/N+75PT0P2z1rThc/lk8QQPkEMryaoLM/snh6voDAhD6Z0Uc+1ulWQIXsBT3J5Bi/tY3Pv5PQ2z41eMY/crWhvSi/CMCMx4PA8pTTPzkr/rrx1cE9PhYIPrGLgL9fr+s+KKeWPsvB2b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoVI22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATrLQPQAAAADnhOW/AAAAAMs+w70AAAAAwSL2PwAAAABvnc09AAAAAJ004D8AAAAApFOqPQAAAAA42gDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwbflNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHcknTwAAAAAy8buvwAAAADE+5A8AAAAAHaN6j8AAAAAhX7dvAAAAABNktw/AAAAAA2P3L0AAAAA/onzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF1KDbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAkViw9AAAAANV3/L8AAAAAlFvivQAAAAA3M+k/AAAAAL2oHb0AAAAAOEz5PwAAAACJF8y9AAAAAGmV478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6zm22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6s+mPQAAAADyhuW/AAAAAIkOl70AAAAAlN3kPwAAAACQqVi9AAAAAEizAEAAAAAA7I1hvQAAAACjhve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk8pwZOzpqMAWyUTegDjAF0lEdArPF4nc+JQHV9lChoBkdAmMNQC0WuYGgHTegDaAhHQKzy4wGnn+11fZQoaAZHQJqo1hc7hehoB03oA2gIR0Cs9ItfgJkYdX2UKGgGR0CZVt2LpA2RaAdN6ANoCEdArPYoJ1JUYXV9lChoBkdAmznI3rD632gHTegDaAhHQKz+F93r2QJ1fZQoaAZHQJdLseHSF49oB03oA2gIR0Cs/4Xlr/KhdX2UKGgGR0CZMWzDGcWkaAdN6ANoCEdArQE07nxJ/XV9lChoBkdAlqF0XpGFz2gHTegDaAhHQK0C7GIbfgt1fZQoaAZHQJbnW4YrJ8xoB03oA2gIR0CtEKWluWKNdX2UKGgGR0CWFnxA0KqoaAdN6ANoCEdArRLIhOgxrXV9lChoBkdAlQOzw+dK/WgHTegDaAhHQK0U5xc3VCp1fZQoaAZHQJinyBe5WiloB03oA2gIR0CtFoZle4TcdX2UKGgGR0CUpBzzErGzaAdN6ANoCEdArR64J7b+LnV9lChoBkdAlYqEdzXBg2gHTegDaAhHQK0gIM3qAz51fZQoaAZHQJPlxjurp7loB03oA2gIR0CtIcrYXfqHdX2UKGgGR0CVlLkQPI4maAdN6ANoCEdArSNq3iJfpnV9lChoBkdAl0qhPTG5tmgHTegDaAhHQK0tMGyon8d1fZQoaAZHQJbGJgJC0F9oB03oA2gIR0CtL2ZFgDzRdX2UKGgGR0CS49iu+yquaAdN6ANoCEdArTHErAgxJ3V9lChoBkdAlNtNKNAC4mgHTegDaAhHQK0zWfV7QcB1fZQoaAZHQJMgqjynUDxoB03oA2gIR0CtO25Grjo7dX2UKGgGR0CVSdazNUwSaAdN6ANoCEdArTzd+G47R3V9lChoBkdAlvBwbuMMqmgHTegDaAhHQK0+fDKoybh1fZQoaAZHQJN1TvAoG6hoB03oA2gIR0CtQCVWKdhBdX2UKGgGR0CX55N0eU6gaAdN6ANoCEdArUl12LYPG3V9lChoBkdAkt9fR7Z392gHTegDaAhHQK1LmJ7b+Lp1fZQoaAZHQJWKxLM9r45oB03oA2gIR0CtTinF5v9+dX2UKGgGR0CX8HTOgQHzaAdN6ANoCEdArU/wTEit73V9lChoBkdAl4D4XKr7wmgHTegDaAhHQK1bF9m6Gxl1fZQoaAZHQJZE3rs0HhVoB03oA2gIR0CtXIU7Sy+pdX2UKGgGR0CXnYynUDuCaAdN6ANoCEdArV4yUkfLcXV9lChoBkdAlIjVKbrkbWgHTegDaAhHQK1f1RQaaTh1fZQoaAZHQJjS+F23azxoB03oA2gIR0CtaoZ/Tb35dX2UKGgGR0CXgQyMDOkdaAdN6ANoCEdArWyNNHpbEHV9lChoBkdAmLk08zQ/o2gHTegDaAhHQK1uStapxWF1fZQoaAZHQJXjYAU+LWJoB03oA2gIR0Ctb+axoqTbdX2UKGgGR0CYr8cD8tPIaAdN6ANoCEdArXgdYlpoK3V9lChoBkdAl6KfmozeoGgHTegDaAhHQK15nXS0BwN1fZQoaAZHQJWstepn6EdoB03oA2gIR0Cte0slLOAzdX2UKGgGR0CYTzEl3QlbaAdN6ANoCEdArXzlwgkkbHV9lChoBkdAlDLXKnvUjWgHTegDaAhHQK2HTCojv/l1fZQoaAZHQJWrI8jiXIFoB03oA2gIR0CtiW3B55Z9dX2UKGgGR0CVgs2MKkVOaAdN6ANoCEdArYsjcuanaXV9lChoBkdAlqt0KiO/+WgHTegDaAhHQK2MvvmYBvJ1fZQoaAZHQJbd9gVoHs1oB03oA2gIR0CtlOUEPlMidX2UKGgGR0CX1GCVbA1vaAdN6ANoCEdArZZG01IiDHV9lChoBkdAlkiVJUYKpmgHTegDaAhHQK2X+lC1JDp1fZQoaAZHQJco7WVeKKpoB03oA2gIR0CtmZudGy5adX2UKGgGR0CYmdhW5paiaAdN6ANoCEdAraSLJSzgM3V9lChoBkdAmWazriVB2WgHTegDaAhHQK2m6sQumJp1fZQoaAZHQJeqvNdJJ5FoB03oA2gIR0CtqZnctXgcdX2UKGgGR0CZNACa7VawaAdN6ANoCEdAraxEgMc6vXV9lChoBkdAmlT1SOzY3GgHTegDaAhHQK21NrftQbd1fZQoaAZHQJnF31Iy0rtoB03oA2gIR0Cttp8NH6MzdX2UKGgGR0CbKX9yLhrFaAdN6ANoCEdArbhMUAT7EnV9lChoBkdAmVzskUsWf2gHTegDaAhHQK255WPLgXN1fZQoaAZHQJaxqIeo1k1oB03oA2gIR0CtwpkJa7mMdX2UKGgGR0CV5Cs+3YthaAdN6ANoCEdArcSt3IMjNnV9lChoBkdAmCzGXb/OuGgHTegDaAhHQK3HUPOIInl1fZQoaAZHQJgTEQ/X5FhoB03oA2gIR0Ctyci/O+qSdX2UKGgGR0CairEKmbb2aAdN6ANoCEdArdIMc81XNnV9lChoBkdAmG+mll9SdmgHTegDaAhHQK3TdJyyUs51fZQoaAZHQJlUF9x6v7poB03oA2gIR0Ct1TLPD50sdX2UKGgGR0CZjPDNQj2SaAdN6ANoCEdArdbag00m+nV9lChoBkdAmdQ/pdKNAGgHTegDaAhHQK3fbo6jnFJ1fZQoaAZHQJhEzENvwVloB03oA2gIR0Ct4YFxn3+NdX2UKGgGR0CYDO8/2TPjaAdN6ANoCEdAreQlvS+g13V9lChoBkdAmTwlm4Ajp2gHTegDaAhHQK3mpZr56+p1fZQoaAZHQJnsYNPP9k1oB03oA2gIR0Ct7zpnQID6dX2UKGgGR0CYF7KF7D2raAdN6ANoCEdArfED7ALy+nV9lChoBkdAmXP8mjTKDGgHTegDaAhHQK3zfVWjoIR1fZQoaAZHQJoMD029+PRoB03oA2gIR0Ct9gPF3pwCdX2UKGgGR0CY72fra/RFaAdN6ANoCEdArgDuNJe3QXV9lChoBkdAmstEUO/cnGgHTegDaAhHQK4DIeHSF491fZQoaAZHQJ0UmI7/4qRoB03oA2gIR0CuBYHDJlredX2UKGgGR0CZzF1cMVk+aAdN6ANoCEdArgcqS9ugpXV9lChoBkdAnBCwFPi1iWgHTegDaAhHQK4POBT4tYl1fZQoaAZHQJqtZP/JeVtoB03oA2gIR0CuEKazNUwSdX2UKGgGR0CcSuSqlxffaAdN6ANoCEdArhJOnTAnD3V9lChoBkdAlghqVdHDrWgHTegDaAhHQK4T4UHpr1x1fZQoaAZHQJc51+hGpddoB03oA2gIR0CuHU8s189fdX2UKGgGR0CbpdGOdXkpaAdN6ANoCEdArh92nGbTdHV9lChoBkdAltU+wTufEmgHTegDaAhHQK4h/zyz5XV1fZQoaAZHQJTHZroGIKtoB03oA2gIR0CuI6RNIsiCdX2UKGgGR0CX97qQA+6iaAdN6ANoCEdAriu6BbwBo3V9lChoBkdAmCGDhDPWx2gHTegDaAhHQK4tJqAz5451fZQoaAZHQJVShjwx33ZoB03oA2gIR0CuLsqtPpIMdX2UKGgGR0CZSMFzuF6BaAdN6ANoCEdArjB1f7aZhXV9lChoBkdAmnuRDgIhQmgHTegDaAhHQK45hu1F6Rh1fZQoaAZHQJhBB7TlT3toB03oA2gIR0CuO6jYh+vydX2UKGgGR0CXq76I3zczaAdN6ANoCEdArj48xj8UEnV9lChoBkdAmCpz2i+L32gHTegDaAhHQK5A5NFjNIN1fZQoaAZHQJesz1UVBUtoB03oA2gIR0CuS3VinYQKdX2UKGgGR0CYsK4+8oQWaAdN6ANoCEdArkzgy9EkSnV9lChoBkdAlj3BxLkCFWgHTegDaAhHQK5Oid4mkWR1fZQoaAZHQJkwkFX7tRhoB03oA2gIR0CuUCImPYFrdX2UKGgGR0CZUeQ8OkLyaAdN6ANoCEdArlpau6mO2nV9lChoBkdAlY+HmaH9FWgHTegDaAhHQK5chK2a2F51fZQoaAZHQJfsXPw/gR9oB03oA2gIR0CuXnChWYF8dX2UKGgGR0CZsKtTkyULaAdN6ANoCEdArmAFRLsa9HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b925c6d3057f3c671f2f9847dd99c293978267676e6462eff80f5dc94f4cbf20
3
+ size 1086828
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1253.6550047849537, "std_reward": 117.20237043892125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T21:39:22.732497"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11898fd4a33d39c591e18875deb7b6bad27d48027345f96a05ab3a0d2bde7f60
3
+ size 2136