Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1253.66 +/- 117.20
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1552f8af5463a4728acb499b882aefb7412366b26655b667c2ec58070d44e60
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e6b0a43a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e6b0a4430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e6b0a44c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e6b0a4550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5e6b0a45e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5e6b0a4670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e6b0a4700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e6b0a4790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5e6b0a4820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e6b0a48b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e6b0a4940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e6b0a49d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5e6b0a39c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678653344016556520,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIOR4z8+q+670yEBPzl5LD2jTGtAGdQxP1U5YD+MPP0+U3cePttV476g9g1AEbggv3Qd+7t0+2pAfqgWwI8qkD5LYaY/JHeWP16uFr+UhMy/tc6bP5XhBsA5GApAhioCvbGLgL9yCAvAqYFZwMp6Fj+FEZg/49tJP0g+Vr6PhXk/5D/Vv2Z0ZLzzQfE+8e5FPxOs+r5LH/i/ST/NP+4l1T5ZGEW/EUdUwJoyF8D1O2U95v7NPtsBgMA5+Zm/c4qEvRcO0z8OHp+9+oCBv7NIGb7N6X4/X6/rPiinlj7Lwdm/pyuzP533kL4p0CA/fbiwPzu6/z9HmZI/iYijPwLjG78OiLM+FBUWOzLcBz8bUvi+8HOKP4cVwz8McY+/bPGIP7C9MT9kF2M/GfgqP3g4ozwXmRE/5pAtv3chkD8KBFY+sYuAv1+v6z4op5Y+ynoWPybhmT+VAAA/N+75PT0P2z1rThc/lk8QQPkEMryaoLM/snh6voDAhD6Z0Uc+1ulWQIXsBT3J5Bi/tY3Pv5PQ2z41eMY/crWhvSi/CMCMx4PA8pTTPzkr/rrx1cE9PhYIPrGLgL9fr+s+KKeWPsvB2b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoVI22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATrLQPQAAAADnhOW/AAAAAMs+w70AAAAAwSL2PwAAAABvnc09AAAAAJ004D8AAAAApFOqPQAAAAA42gDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwbflNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHcknTwAAAAAy8buvwAAAADE+5A8AAAAAHaN6j8AAAAAhX7dvAAAAABNktw/AAAAAA2P3L0AAAAA/onzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF1KDbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAkViw9AAAAANV3/L8AAAAAlFvivQAAAAA3M+k/AAAAAL2oHb0AAAAAOEz5PwAAAACJF8y9AAAAAGmV478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6zm22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6s+mPQAAAADyhuW/AAAAAIkOl70AAAAAlN3kPwAAAACQqVi9AAAAAEizAEAAAAAA7I1hvQAAAACjhve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk8pwZOzpqMAWyUTegDjAF0lEdArPF4nc+JQHV9lChoBkdAmMNQC0WuYGgHTegDaAhHQKzy4wGnn+11fZQoaAZHQJqo1hc7hehoB03oA2gIR0Cs9ItfgJkYdX2UKGgGR0CZVt2LpA2RaAdN6ANoCEdArPYoJ1JUYXV9lChoBkdAmznI3rD632gHTegDaAhHQKz+F93r2QJ1fZQoaAZHQJdLseHSF49oB03oA2gIR0Cs/4Xlr/KhdX2UKGgGR0CZMWzDGcWkaAdN6ANoCEdArQE07nxJ/XV9lChoBkdAlqF0XpGFz2gHTegDaAhHQK0C7GIbfgt1fZQoaAZHQJbnW4YrJ8xoB03oA2gIR0CtEKWluWKNdX2UKGgGR0CWFnxA0KqoaAdN6ANoCEdArRLIhOgxrXV9lChoBkdAlQOzw+dK/WgHTegDaAhHQK0U5xc3VCp1fZQoaAZHQJinyBe5WiloB03oA2gIR0CtFoZle4TcdX2UKGgGR0CUpBzzErGzaAdN6ANoCEdArR64J7b+LnV9lChoBkdAlYqEdzXBg2gHTegDaAhHQK0gIM3qAz51fZQoaAZHQJPlxjurp7loB03oA2gIR0CtIcrYXfqHdX2UKGgGR0CVlLkQPI4maAdN6ANoCEdArSNq3iJfpnV9lChoBkdAl0qhPTG5tmgHTegDaAhHQK0tMGyon8d1fZQoaAZHQJbGJgJC0F9oB03oA2gIR0CtL2ZFgDzRdX2UKGgGR0CS49iu+yquaAdN6ANoCEdArTHErAgxJ3V9lChoBkdAlNtNKNAC4mgHTegDaAhHQK0zWfV7QcB1fZQoaAZHQJMgqjynUDxoB03oA2gIR0CtO25Grjo7dX2UKGgGR0CVSdazNUwSaAdN6ANoCEdArTzd+G47R3V9lChoBkdAlvBwbuMMqmgHTegDaAhHQK0+fDKoybh1fZQoaAZHQJN1TvAoG6hoB03oA2gIR0CtQCVWKdhBdX2UKGgGR0CX55N0eU6gaAdN6ANoCEdArUl12LYPG3V9lChoBkdAkt9fR7Z392gHTegDaAhHQK1LmJ7b+Lp1fZQoaAZHQJWKxLM9r45oB03oA2gIR0CtTinF5v9+dX2UKGgGR0CX8HTOgQHzaAdN6ANoCEdArU/wTEit73V9lChoBkdAl4D4XKr7wmgHTegDaAhHQK1bF9m6Gxl1fZQoaAZHQJZE3rs0HhVoB03oA2gIR0CtXIU7Sy+pdX2UKGgGR0CXnYynUDuCaAdN6ANoCEdArV4yUkfLcXV9lChoBkdAlIjVKbrkbWgHTegDaAhHQK1f1RQaaTh1fZQoaAZHQJjS+F23azxoB03oA2gIR0CtaoZ/Tb35dX2UKGgGR0CXgQyMDOkdaAdN6ANoCEdArWyNNHpbEHV9lChoBkdAmLk08zQ/o2gHTegDaAhHQK1uStapxWF1fZQoaAZHQJXjYAU+LWJoB03oA2gIR0Ctb+axoqTbdX2UKGgGR0CYr8cD8tPIaAdN6ANoCEdArXgdYlpoK3V9lChoBkdAl6KfmozeoGgHTegDaAhHQK15nXS0BwN1fZQoaAZHQJWstepn6EdoB03oA2gIR0Cte0slLOAzdX2UKGgGR0CYTzEl3QlbaAdN6ANoCEdArXzlwgkkbHV9lChoBkdAlDLXKnvUjWgHTegDaAhHQK2HTCojv/l1fZQoaAZHQJWrI8jiXIFoB03oA2gIR0CtiW3B55Z9dX2UKGgGR0CVgs2MKkVOaAdN6ANoCEdArYsjcuanaXV9lChoBkdAlqt0KiO/+WgHTegDaAhHQK2MvvmYBvJ1fZQoaAZHQJbd9gVoHs1oB03oA2gIR0CtlOUEPlMidX2UKGgGR0CX1GCVbA1vaAdN6ANoCEdArZZG01IiDHV9lChoBkdAlkiVJUYKpmgHTegDaAhHQK2X+lC1JDp1fZQoaAZHQJco7WVeKKpoB03oA2gIR0CtmZudGy5adX2UKGgGR0CYmdhW5paiaAdN6ANoCEdAraSLJSzgM3V9lChoBkdAmWazriVB2WgHTegDaAhHQK2m6sQumJp1fZQoaAZHQJeqvNdJJ5FoB03oA2gIR0CtqZnctXgcdX2UKGgGR0CZNACa7VawaAdN6ANoCEdAraxEgMc6vXV9lChoBkdAmlT1SOzY3GgHTegDaAhHQK21NrftQbd1fZQoaAZHQJnF31Iy0rtoB03oA2gIR0Cttp8NH6MzdX2UKGgGR0CbKX9yLhrFaAdN6ANoCEdArbhMUAT7EnV9lChoBkdAmVzskUsWf2gHTegDaAhHQK255WPLgXN1fZQoaAZHQJaxqIeo1k1oB03oA2gIR0CtwpkJa7mMdX2UKGgGR0CV5Cs+3YthaAdN6ANoCEdArcSt3IMjNnV9lChoBkdAmCzGXb/OuGgHTegDaAhHQK3HUPOIInl1fZQoaAZHQJgTEQ/X5FhoB03oA2gIR0Ctyci/O+qSdX2UKGgGR0CairEKmbb2aAdN6ANoCEdArdIMc81XNnV9lChoBkdAmG+mll9SdmgHTegDaAhHQK3TdJyyUs51fZQoaAZHQJlUF9x6v7poB03oA2gIR0Ct1TLPD50sdX2UKGgGR0CZjPDNQj2SaAdN6ANoCEdArdbag00m+nV9lChoBkdAmdQ/pdKNAGgHTegDaAhHQK3fbo6jnFJ1fZQoaAZHQJhEzENvwVloB03oA2gIR0Ct4YFxn3+NdX2UKGgGR0CYDO8/2TPjaAdN6ANoCEdAreQlvS+g13V9lChoBkdAmTwlm4Ajp2gHTegDaAhHQK3mpZr56+p1fZQoaAZHQJnsYNPP9k1oB03oA2gIR0Ct7zpnQID6dX2UKGgGR0CYF7KF7D2raAdN6ANoCEdArfED7ALy+nV9lChoBkdAmXP8mjTKDGgHTegDaAhHQK3zfVWjoIR1fZQoaAZHQJoMD029+PRoB03oA2gIR0Ct9gPF3pwCdX2UKGgGR0CY72fra/RFaAdN6ANoCEdArgDuNJe3QXV9lChoBkdAmstEUO/cnGgHTegDaAhHQK4DIeHSF491fZQoaAZHQJ0UmI7/4qRoB03oA2gIR0CuBYHDJlredX2UKGgGR0CZzF1cMVk+aAdN6ANoCEdArgcqS9ugpXV9lChoBkdAnBCwFPi1iWgHTegDaAhHQK4POBT4tYl1fZQoaAZHQJqtZP/JeVtoB03oA2gIR0CuEKazNUwSdX2UKGgGR0CcSuSqlxffaAdN6ANoCEdArhJOnTAnD3V9lChoBkdAlghqVdHDrWgHTegDaAhHQK4T4UHpr1x1fZQoaAZHQJc51+hGpddoB03oA2gIR0CuHU8s189fdX2UKGgGR0CbpdGOdXkpaAdN6ANoCEdArh92nGbTdHV9lChoBkdAltU+wTufEmgHTegDaAhHQK4h/zyz5XV1fZQoaAZHQJTHZroGIKtoB03oA2gIR0CuI6RNIsiCdX2UKGgGR0CX97qQA+6iaAdN6ANoCEdAriu6BbwBo3V9lChoBkdAmCGDhDPWx2gHTegDaAhHQK4tJqAz5451fZQoaAZHQJVShjwx33ZoB03oA2gIR0CuLsqtPpIMdX2UKGgGR0CZSMFzuF6BaAdN6ANoCEdArjB1f7aZhXV9lChoBkdAmnuRDgIhQmgHTegDaAhHQK45hu1F6Rh1fZQoaAZHQJhBB7TlT3toB03oA2gIR0CuO6jYh+vydX2UKGgGR0CXq76I3zczaAdN6ANoCEdArj48xj8UEnV9lChoBkdAmCpz2i+L32gHTegDaAhHQK5A5NFjNIN1fZQoaAZHQJesz1UVBUtoB03oA2gIR0CuS3VinYQKdX2UKGgGR0CYsK4+8oQWaAdN6ANoCEdArkzgy9EkSnV9lChoBkdAlj3BxLkCFWgHTegDaAhHQK5Oid4mkWR1fZQoaAZHQJkwkFX7tRhoB03oA2gIR0CuUCImPYFrdX2UKGgGR0CZUeQ8OkLyaAdN6ANoCEdArlpau6mO2nV9lChoBkdAlY+HmaH9FWgHTegDaAhHQK5chK2a2F51fZQoaAZHQJfsXPw/gR9oB03oA2gIR0CuXnChWYF8dX2UKGgGR0CZsKtTkyULaAdN6ANoCEdArmAFRLsa9HVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5d7f097464a22509534205ee3d7f4f71c641a62a69400c03b5ddd0c09d2aa6a
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e26f12a6e156926cef4ca7db17ce71ffa8fb690e35828be6496536d3e80e5db
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e6b0a43a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e6b0a4430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e6b0a44c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e6b0a4550>", "_build": "<function ActorCriticPolicy._build at 0x7f5e6b0a45e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e6b0a4670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e6b0a4700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e6b0a4790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e6b0a4820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e6b0a48b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e6b0a4940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e6b0a49d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5e6b0a39c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678653344016556520, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIOR4z8+q+670yEBPzl5LD2jTGtAGdQxP1U5YD+MPP0+U3cePttV476g9g1AEbggv3Qd+7t0+2pAfqgWwI8qkD5LYaY/JHeWP16uFr+UhMy/tc6bP5XhBsA5GApAhioCvbGLgL9yCAvAqYFZwMp6Fj+FEZg/49tJP0g+Vr6PhXk/5D/Vv2Z0ZLzzQfE+8e5FPxOs+r5LH/i/ST/NP+4l1T5ZGEW/EUdUwJoyF8D1O2U95v7NPtsBgMA5+Zm/c4qEvRcO0z8OHp+9+oCBv7NIGb7N6X4/X6/rPiinlj7Lwdm/pyuzP533kL4p0CA/fbiwPzu6/z9HmZI/iYijPwLjG78OiLM+FBUWOzLcBz8bUvi+8HOKP4cVwz8McY+/bPGIP7C9MT9kF2M/GfgqP3g4ozwXmRE/5pAtv3chkD8KBFY+sYuAv1+v6z4op5Y+ynoWPybhmT+VAAA/N+75PT0P2z1rThc/lk8QQPkEMryaoLM/snh6voDAhD6Z0Uc+1ulWQIXsBT3J5Bi/tY3Pv5PQ2z41eMY/crWhvSi/CMCMx4PA8pTTPzkr/rrx1cE9PhYIPrGLgL9fr+s+KKeWPsvB2b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoVI22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATrLQPQAAAADnhOW/AAAAAMs+w70AAAAAwSL2PwAAAABvnc09AAAAAJ004D8AAAAApFOqPQAAAAA42gDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwbflNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHcknTwAAAAAy8buvwAAAADE+5A8AAAAAHaN6j8AAAAAhX7dvAAAAABNktw/AAAAAA2P3L0AAAAA/onzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF1KDbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAkViw9AAAAANV3/L8AAAAAlFvivQAAAAA3M+k/AAAAAL2oHb0AAAAAOEz5PwAAAACJF8y9AAAAAGmV478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6zm22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6s+mPQAAAADyhuW/AAAAAIkOl70AAAAAlN3kPwAAAACQqVi9AAAAAEizAEAAAAAA7I1hvQAAAACjhve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk8pwZOzpqMAWyUTegDjAF0lEdArPF4nc+JQHV9lChoBkdAmMNQC0WuYGgHTegDaAhHQKzy4wGnn+11fZQoaAZHQJqo1hc7hehoB03oA2gIR0Cs9ItfgJkYdX2UKGgGR0CZVt2LpA2RaAdN6ANoCEdArPYoJ1JUYXV9lChoBkdAmznI3rD632gHTegDaAhHQKz+F93r2QJ1fZQoaAZHQJdLseHSF49oB03oA2gIR0Cs/4Xlr/KhdX2UKGgGR0CZMWzDGcWkaAdN6ANoCEdArQE07nxJ/XV9lChoBkdAlqF0XpGFz2gHTegDaAhHQK0C7GIbfgt1fZQoaAZHQJbnW4YrJ8xoB03oA2gIR0CtEKWluWKNdX2UKGgGR0CWFnxA0KqoaAdN6ANoCEdArRLIhOgxrXV9lChoBkdAlQOzw+dK/WgHTegDaAhHQK0U5xc3VCp1fZQoaAZHQJinyBe5WiloB03oA2gIR0CtFoZle4TcdX2UKGgGR0CUpBzzErGzaAdN6ANoCEdArR64J7b+LnV9lChoBkdAlYqEdzXBg2gHTegDaAhHQK0gIM3qAz51fZQoaAZHQJPlxjurp7loB03oA2gIR0CtIcrYXfqHdX2UKGgGR0CVlLkQPI4maAdN6ANoCEdArSNq3iJfpnV9lChoBkdAl0qhPTG5tmgHTegDaAhHQK0tMGyon8d1fZQoaAZHQJbGJgJC0F9oB03oA2gIR0CtL2ZFgDzRdX2UKGgGR0CS49iu+yquaAdN6ANoCEdArTHErAgxJ3V9lChoBkdAlNtNKNAC4mgHTegDaAhHQK0zWfV7QcB1fZQoaAZHQJMgqjynUDxoB03oA2gIR0CtO25Grjo7dX2UKGgGR0CVSdazNUwSaAdN6ANoCEdArTzd+G47R3V9lChoBkdAlvBwbuMMqmgHTegDaAhHQK0+fDKoybh1fZQoaAZHQJN1TvAoG6hoB03oA2gIR0CtQCVWKdhBdX2UKGgGR0CX55N0eU6gaAdN6ANoCEdArUl12LYPG3V9lChoBkdAkt9fR7Z392gHTegDaAhHQK1LmJ7b+Lp1fZQoaAZHQJWKxLM9r45oB03oA2gIR0CtTinF5v9+dX2UKGgGR0CX8HTOgQHzaAdN6ANoCEdArU/wTEit73V9lChoBkdAl4D4XKr7wmgHTegDaAhHQK1bF9m6Gxl1fZQoaAZHQJZE3rs0HhVoB03oA2gIR0CtXIU7Sy+pdX2UKGgGR0CXnYynUDuCaAdN6ANoCEdArV4yUkfLcXV9lChoBkdAlIjVKbrkbWgHTegDaAhHQK1f1RQaaTh1fZQoaAZHQJjS+F23azxoB03oA2gIR0CtaoZ/Tb35dX2UKGgGR0CXgQyMDOkdaAdN6ANoCEdArWyNNHpbEHV9lChoBkdAmLk08zQ/o2gHTegDaAhHQK1uStapxWF1fZQoaAZHQJXjYAU+LWJoB03oA2gIR0Ctb+axoqTbdX2UKGgGR0CYr8cD8tPIaAdN6ANoCEdArXgdYlpoK3V9lChoBkdAl6KfmozeoGgHTegDaAhHQK15nXS0BwN1fZQoaAZHQJWstepn6EdoB03oA2gIR0Cte0slLOAzdX2UKGgGR0CYTzEl3QlbaAdN6ANoCEdArXzlwgkkbHV9lChoBkdAlDLXKnvUjWgHTegDaAhHQK2HTCojv/l1fZQoaAZHQJWrI8jiXIFoB03oA2gIR0CtiW3B55Z9dX2UKGgGR0CVgs2MKkVOaAdN6ANoCEdArYsjcuanaXV9lChoBkdAlqt0KiO/+WgHTegDaAhHQK2MvvmYBvJ1fZQoaAZHQJbd9gVoHs1oB03oA2gIR0CtlOUEPlMidX2UKGgGR0CX1GCVbA1vaAdN6ANoCEdArZZG01IiDHV9lChoBkdAlkiVJUYKpmgHTegDaAhHQK2X+lC1JDp1fZQoaAZHQJco7WVeKKpoB03oA2gIR0CtmZudGy5adX2UKGgGR0CYmdhW5paiaAdN6ANoCEdAraSLJSzgM3V9lChoBkdAmWazriVB2WgHTegDaAhHQK2m6sQumJp1fZQoaAZHQJeqvNdJJ5FoB03oA2gIR0CtqZnctXgcdX2UKGgGR0CZNACa7VawaAdN6ANoCEdAraxEgMc6vXV9lChoBkdAmlT1SOzY3GgHTegDaAhHQK21NrftQbd1fZQoaAZHQJnF31Iy0rtoB03oA2gIR0Cttp8NH6MzdX2UKGgGR0CbKX9yLhrFaAdN6ANoCEdArbhMUAT7EnV9lChoBkdAmVzskUsWf2gHTegDaAhHQK255WPLgXN1fZQoaAZHQJaxqIeo1k1oB03oA2gIR0CtwpkJa7mMdX2UKGgGR0CV5Cs+3YthaAdN6ANoCEdArcSt3IMjNnV9lChoBkdAmCzGXb/OuGgHTegDaAhHQK3HUPOIInl1fZQoaAZHQJgTEQ/X5FhoB03oA2gIR0Ctyci/O+qSdX2UKGgGR0CairEKmbb2aAdN6ANoCEdArdIMc81XNnV9lChoBkdAmG+mll9SdmgHTegDaAhHQK3TdJyyUs51fZQoaAZHQJlUF9x6v7poB03oA2gIR0Ct1TLPD50sdX2UKGgGR0CZjPDNQj2SaAdN6ANoCEdArdbag00m+nV9lChoBkdAmdQ/pdKNAGgHTegDaAhHQK3fbo6jnFJ1fZQoaAZHQJhEzENvwVloB03oA2gIR0Ct4YFxn3+NdX2UKGgGR0CYDO8/2TPjaAdN6ANoCEdAreQlvS+g13V9lChoBkdAmTwlm4Ajp2gHTegDaAhHQK3mpZr56+p1fZQoaAZHQJnsYNPP9k1oB03oA2gIR0Ct7zpnQID6dX2UKGgGR0CYF7KF7D2raAdN6ANoCEdArfED7ALy+nV9lChoBkdAmXP8mjTKDGgHTegDaAhHQK3zfVWjoIR1fZQoaAZHQJoMD029+PRoB03oA2gIR0Ct9gPF3pwCdX2UKGgGR0CY72fra/RFaAdN6ANoCEdArgDuNJe3QXV9lChoBkdAmstEUO/cnGgHTegDaAhHQK4DIeHSF491fZQoaAZHQJ0UmI7/4qRoB03oA2gIR0CuBYHDJlredX2UKGgGR0CZzF1cMVk+aAdN6ANoCEdArgcqS9ugpXV9lChoBkdAnBCwFPi1iWgHTegDaAhHQK4POBT4tYl1fZQoaAZHQJqtZP/JeVtoB03oA2gIR0CuEKazNUwSdX2UKGgGR0CcSuSqlxffaAdN6ANoCEdArhJOnTAnD3V9lChoBkdAlghqVdHDrWgHTegDaAhHQK4T4UHpr1x1fZQoaAZHQJc51+hGpddoB03oA2gIR0CuHU8s189fdX2UKGgGR0CbpdGOdXkpaAdN6ANoCEdArh92nGbTdHV9lChoBkdAltU+wTufEmgHTegDaAhHQK4h/zyz5XV1fZQoaAZHQJTHZroGIKtoB03oA2gIR0CuI6RNIsiCdX2UKGgGR0CX97qQA+6iaAdN6ANoCEdAriu6BbwBo3V9lChoBkdAmCGDhDPWx2gHTegDaAhHQK4tJqAz5451fZQoaAZHQJVShjwx33ZoB03oA2gIR0CuLsqtPpIMdX2UKGgGR0CZSMFzuF6BaAdN6ANoCEdArjB1f7aZhXV9lChoBkdAmnuRDgIhQmgHTegDaAhHQK45hu1F6Rh1fZQoaAZHQJhBB7TlT3toB03oA2gIR0CuO6jYh+vydX2UKGgGR0CXq76I3zczaAdN6ANoCEdArj48xj8UEnV9lChoBkdAmCpz2i+L32gHTegDaAhHQK5A5NFjNIN1fZQoaAZHQJesz1UVBUtoB03oA2gIR0CuS3VinYQKdX2UKGgGR0CYsK4+8oQWaAdN6ANoCEdArkzgy9EkSnV9lChoBkdAlj3BxLkCFWgHTegDaAhHQK5Oid4mkWR1fZQoaAZHQJkwkFX7tRhoB03oA2gIR0CuUCImPYFrdX2UKGgGR0CZUeQ8OkLyaAdN6ANoCEdArlpau6mO2nV9lChoBkdAlY+HmaH9FWgHTegDaAhHQK5chK2a2F51fZQoaAZHQJfsXPw/gR9oB03oA2gIR0CuXnChWYF8dX2UKGgGR0CZsKtTkyULaAdN6ANoCEdArmAFRLsa9HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b925c6d3057f3c671f2f9847dd99c293978267676e6462eff80f5dc94f4cbf20
|
3 |
+
size 1086828
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1253.6550047849537, "std_reward": 117.20237043892125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T21:39:22.732497"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11898fd4a33d39c591e18875deb7b6bad27d48027345f96a05ab3a0d2bde7f60
|
3 |
+
size 2136
|