--- language: - az license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Large v3 Ai - Nurlan Salahaddinov results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: az split: None args: 'config: az, split: test' metrics: - name: Wer type: wer value: 1.1952191235059761 --- # Whisper Large v3 Ai - Nurlan Salahaddinov This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Wer: 1.1952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0001 | 40.0 | 1000 | 0.0001 | 1.1952 | | 0.0 | 80.0 | 2000 | 0.0000 | 1.1952 | | 0.0 | 120.0 | 3000 | 0.0000 | 1.1952 | | 0.0 | 160.0 | 4000 | 0.0000 | 1.1952 | | 0.0 | 200.0 | 5000 | 0.0000 | 1.1952 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1