--- base_model: meta-llama/Meta-Llama-3-8B-Instruct datasets: - nthakur/mirage-gpt-4o-sft-instruct-llama-3 - nthakur/mirage-meta-llama-3-mistral-sft-instruct-meta-llama-tokenizer library_name: peft license: llama3 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: Meta-Llama-3-8B-Instruct-mirage-all-teacher-instruct-llama-3-sft results: [] --- # Meta-Llama-3-8B-Instruct-mirage-all-teacher-instruct-llama-3-sft This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the nthakur/mirage-gpt-4o-sft-instruct-llama-3 and the nthakur/mirage-meta-llama-3-mistral-sft-instruct-meta-llama-tokenizer datasets. It achieves the following results on the evaluation set: - Loss: 0.2593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3535 | 0.0412 | 200 | 0.3586 | | 0.4117 | 0.0824 | 400 | 0.3371 | | 0.3577 | 0.1236 | 600 | 0.3277 | | 0.3594 | 0.1649 | 800 | 0.3194 | | 0.3603 | 0.2061 | 1000 | 0.3096 | | 0.3633 | 0.2473 | 1200 | 0.3063 | | 0.3078 | 0.2885 | 1400 | 0.3000 | | 0.3274 | 0.3297 | 1600 | 0.2948 | | 0.3474 | 0.3709 | 1800 | 0.2925 | | 0.3401 | 0.4122 | 2000 | 0.2875 | | 0.3124 | 0.4534 | 2200 | 0.2839 | | 0.3095 | 0.4946 | 2400 | 0.2802 | | 0.3532 | 0.5358 | 2600 | 0.2775 | | 0.301 | 0.5770 | 2800 | 0.2757 | | 0.3204 | 0.6182 | 3000 | 0.2712 | | 0.3158 | 0.6595 | 3200 | 0.2687 | | 0.3032 | 0.7007 | 3400 | 0.2667 | | 0.2851 | 0.7419 | 3600 | 0.2645 | | 0.2903 | 0.7831 | 3800 | 0.2629 | | 0.2943 | 0.8243 | 4000 | 0.2613 | | 0.2787 | 0.8655 | 4200 | 0.2603 | | 0.2558 | 0.9067 | 4400 | 0.2596 | | 0.3107 | 0.9480 | 4600 | 0.2593 | | 0.2894 | 0.9892 | 4800 | 0.2593 | ### Framework versions - PEFT 0.10.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1