--- license: apache-2.0 library_name: peft tags: - alignment-handbook - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 datasets: - nthakur/mirage-mistral-sft-instruct model-index: - name: Mistral-7B-Instruct-v0.2-mirage-mistral-sft-instruct results: [] --- # Mistral-7B-Instruct-v0.2-mirage-mistral-sft-instruct This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the nthakur/mirage-mistral-sft-instruct dataset. It achieves the following results on the evaluation set: - Loss: 0.2758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2844 | 0.2480 | 200 | 0.3115 | | 0.2638 | 0.4960 | 400 | 0.2921 | | 0.2596 | 0.7440 | 600 | 0.2790 | | 0.2458 | 0.9919 | 800 | 0.2758 | ### Framework versions - PEFT 0.7.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1