File size: 1,326 Bytes
a1be16b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
command:
  - python3
  - ${program}
  - --do_train
  - --use_scan
  - --gradient_checkpointing
  - --overwrite_output_dir
  - --predict_with_generate
  - --freeze_encoder
  - --streaming
  - --use_auth_token
  - --compilation_cache
  - ${args}
method: grid
metric:
  goal: minimize
  name: train/loss
parameters:
  model_name_or_path:
    value: distil-whisper/large-32-2
  teacher_model_name_or_path:
    value: openai/whisper-large-v2
  train_dataset_name:
    value: librispeech_asr
  train_dataset_config_name:
    value: all
  train_split_name:
    value: train.other.500
  train_dataset_samples:
    value: 100
  cache_dir:
    value: /fsx/sanchitgandhi/cache
  dataset_cache_dir:
    value: /fsx/sanchitgandhi/cache
  output_dir:
    value: ./
  per_device_train_batch_size:
    values:
      - 128
      - 256
      - 512
  precision:
    values:
      - "full_mixed"
      - "half_mixed"
  dtype:
    value: bfloat16
  do_eval:
    value: false
  learning_rate:
    value: 3e-4
  lr_scheduler_type:
    value: constant_with_warmup
  warmup_steps:
    value: 30
  max_steps:
    value: 30
  save_steps:
    value: 51  # don't save checkpoints during sweep
  dataloader_num_workers:
    value: 48
  logging_steps:
    value: 5
  wer_threshold:
    value: 100
program: run_distillation.py
project: distil-whisper-sweeps