File size: 92,328 Bytes
a1be16b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation.
"""
# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.
import logging
import os
import re
import shutil
import string
import sys
import time
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union
import datasets
import evaluate
import flax
import jax
import jax.numpy as jnp
import numpy as np
import optax
import torch
import transformers
from datasets import (
DatasetDict,
IterableDataset,
IterableDatasetDict,
concatenate_datasets,
interleave_datasets,
load_dataset,
)
from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import Repository, create_repo
from jax.experimental.compilation_cache import compilation_cache as cc
from optax._src import linear_algebra
from torch.utils.data import DataLoader
from torchdata.datapipes.iter import IterableWrapper
from tqdm import tqdm
from transformers import (
AddedToken,
HfArgumentParser,
Seq2SeqTrainingArguments,
WhisperConfig,
WhisperFeatureExtractor,
WhisperProcessor,
WhisperTokenizerFast,
is_tensorboard_available,
is_wandb_available,
set_seed,
)
from transformers.file_utils import get_full_repo_name
from transformers.modeling_flax_outputs import FlaxBaseModelOutput
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from distil_whisper import FlaxWhisperForConditionalGeneration
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.27.0.dev0")
require_version(
"datasets>=1.18.0",
"To fix: pip install -r examples/flax/speech-recogintion/requirements.txt",
)
logger = logging.getLogger(__name__)
@flax.struct.dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": ("Path to pretrained student model or model identifier from huggingface.co/models")}
)
teacher_model_name_or_path: str = field(
metadata={"help": ("Path to pretrained teacher model or model identifier from huggingface.co/models")}
)
config_name: Optional[str] = field(
default=None,
metadata={"help": "Pretrained config name or path if not the same as model_name"},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
)
feature_extractor_name: Optional[str] = field(
default=None,
metadata={"help": "feature extractor name or path if not the same as model_name"},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")},
)
model_revision: str = field(
default="main",
metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")},
)
subfolder: str = field(
default="",
metadata={
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
"specify the folder name here."
},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `transformers-cli login`"
" (necessary to use this script with private models)."
)
},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized"
" and trained. Choose one of `[float32, float16, bfloat16]`."
)
},
)
load_with_scan_weights: bool = field(
default=False,
metadata={
"help": "Whether the pre-trained checkpoint has its weights stored in scan format. Set to True for scanned "
"weights, defaults to False for non-scan (unrolled) weights."
},
)
activation_dropout: float = field(
default=0.0,
metadata={"help": "The dropout ratio for activations inside the fully connected layer."},
)
attention_dropout: float = field(
default=0.0,
metadata={"help": "The dropout ratio for the attention probabilities."},
)
dropout: float = field(
default=0.0,
metadata={
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
},
)
@flax.struct.dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
train_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
},
)
train_dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset configs by a '+' symbol."
},
)
train_dataset_samples: str = field(
default=None,
metadata={
"help": "Number of samples in the training data. Load and combine "
"multiple datasets by separating dataset samples by a '+' symbol."
},
)
eval_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
},
)
eval_dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
},
)
dataset_cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to cache directory for saving and loading datasets"},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets"},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of"
" training examples to this value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of"
" evaluation examples to this value if set."
)
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": ("The name of the dataset column containing the audio data. Defaults to 'audio'")},
)
train_text_column_name: str = field(
default="whisper_transcript",
metadata={
"help": (
"The name of the dataset column containing the text data. Defaults to"
" 'whisper_transcript'which is the pseudo-labelled Whisper"
" transcription data."
)
},
)
eval_text_column_name: str = field(
default="text",
metadata={
"help": (
"The name of the dataset column containing the text data. Defaults to"
" 'text', which is the original text data"
)
},
)
max_duration_in_seconds: float = field(
default=30.0,
metadata={"help": ("Filter audio files that are longer than `max_duration_in_seconds` seconds")},
)
min_duration_in_seconds: float = field(
default=0.0,
metadata={"help": ("Filter audio files that are shorter than `min_duration_in_seconds` seconds")},
)
max_label_length: int = field(
default=128,
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
)
pad_target_to_multiple_of: Optional[int] = field(
default=None,
metadata={
"help": (
"If set will pad the target sequence to a multiple of the provided"
" value. This is important to avoid triggering recompilations on TPU."
" If unspecified, will default to padding the targets to max length."
)
},
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": (
"Whether to only do data preprocessing and skip training. This is"
" especially useful when data preprocessing errors out in distributed"
" training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with"
" `preprocessing_only=True` so that the cached datasets can"
" consequently be loaded in distributed training"
)
},
)
train_split_name: str = field(
default="train",
metadata={
"help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
},
)
eval_split_name: str = field(
default="validation",
metadata={
"help": (
"The name of the evaluation data set split to use (via the datasets"
" library). Defaults to 'validation'"
)
},
)
wandb_project: str = field(
default="distil-whisper",
metadata={"help": "The name of the wandb project."},
)
wandb_name: str = field(
default=None,
metadata={"help": "The name of the wandb run."},
)
wandb_job_type: str = field(
default="distil-whisper",
metadata={"help": "The name of the wandb job type."},
)
wandb_dir: str = field(
default=None,
metadata={"help": "The absolute path to save the wandb logs."},
)
save_code_to_wandb: bool = field(
default=False,
metadata={
"help": (
"Whether to save main script to wandb. This is valuable for improving"
" experiment reproducibility and to diff code across experiments in"
" the UI."
)
},
)
streaming: bool = field(
default=True,
metadata={"help": "Whether to use Datasets' streaming mode to load and the data."},
)
wer_threshold: float = field(
default=None,
metadata={
"help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` "
"WER with the normalised transcriptions."
},
)
prefetch_size: int = field(
default=0,
metadata={"help": "Number of samples to pre-fetch if using an iterable dataset."},
)
timestamp_probability: float = field(
default=0.5, metadata={"help": "Probability for training on timestamped tokens if the data contains it."}
)
return_timestamps: bool = field(
default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."}
)
round_timestamps: bool = field(
default=False,
metadata={
"help": "Whether or not to round the timestamp tokens to the nearest tenth of a second."
"By default, Whisper predicts timestamps to the nearest hundredth of a second."
"Reducing the timestamp precision to one tenth of a second simplifies the timestamp"
"prediction task, at the expense of timestamp granularity."
},
)
@dataclass
class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments):
use_scan: Optional[bool] = field(
default=True,
metadata={
"help": (
"Whether or not to use `scan_with_axes` over the encoder and decoder blocks. Using scan results "
"in faster compile times and more efficient memory use during training, since all of the layers "
"in the encoder/decoder are stacked, and we perform a lax.scan over the stacked block to index "
"each layer. However, it results in slower inference time due to the overhead of stacking the "
"layers this way. Thus, we **always** default to disabling scan for the inference step."
)
},
)
freeze_encoder: Optional[bool] = field(
default=False,
metadata={
"help": (
"Whether to freeze the entire encoder model. Only recommended when the entire encoder has been "
"copied from the teacher model."
)
},
)
temperature: Optional[float] = field(
default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
)
kl_weight: Optional[float] = field(
default=1.0,
metadata={
"help": (
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
"computed between the teacher-student hidden states and attentions."
)
},
)
mse_weight: Optional[float] = field(
default=0.0,
metadata={
"help": (
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
"computed between the teacher-student hidden states and attentions."
)
},
)
precision: Optional[str] = field(
default="half_mixed",
metadata={
"help": (
"Precision with which run training, Can be one of `full`, `half_mixed` or `full_mixed`, the latter two"
"of which enable *mixed-precision* training. **Note that this only specifies the dtype of the computation "
"and optimizer state. It does not influence the dtype of model parameters.** An explanation of the three "
"settings is provided below:"
" 1. Full precision: forward pass, backward pass and optimiser states all in float32."
" 2. Half mixed precision: forward pass in bfloat16, backward pass and optimiser states in float32. This "
" corresponds to setting the dtype argument to bfloat16 when instantiating the model."
" 3. Full mixed precision: forward pass, backward pass and optimiser states all in bfloat16. The dtype "
" argument is set to bfloat16 for the forward pass, and the gradients computed with respect to the bfloat16 "
" parameters in the backward pass (giving bfloat16 gradients). The new optimiser states and parameter "
" updates are computed in float32 by upcasting the bfloat16 gradients and optimiser states to float32 "
" prior to the optimiser update step. The optimiser states are returned in float32 (but not saved to "
" memory) and then downcasted to bfloat16 (saved to memory) for the subsequent train step."
"For further details, refer to https://github.com/deepmind/optax/discussions/336"
)
},
)
compilation_cache: Optional[bool] = field(
default=False,
metadata={
"help": (
"Whether to enable the JAX (experimental) compilation cache. The compilation step is *cached* the "
"first time it is run. Successive compilation steps for the same function utilise the cache to reduce"
"the compilation time."
)
},
)
save_train_state: Optional[bool] = field(
default=False,
metadata={
"help": "Whether or not to save the Flax Train State on each `save_steps` steps. Required if you intend"
"to resume training from partial training runs. If False, only the model weights will be saved."
"If True, both the model weights and Flax Train state will be saved."
},
)
def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray:
"""
Shift label ids one token to the right.
"""
shifted_label_ids = np.zeros_like(label_ids)
shifted_label_ids[:, 1:] = label_ids[:, :-1]
shifted_label_ids[:, 0] = decoder_start_token_id
return shifted_label_ids
@flax.struct.dataclass
class FlaxDataCollatorSpeechSeq2SeqWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor ([`Wav2Vec2Processor`])
The processor used for proccessing the data.
decoder_start_token_id (:obj: `int`)
The start-of-sequence token id of the decoder.
decoder_prev_token_id (:obj: `int`)
The start-of-prompt token id of the decoder
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
See above for details.
max_target_length (:obj:`int`, `optional`):
Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
"""
processor: Any
decoder_start_token_id: int
decoder_prev_token_id: int
input_padding: Union[bool, str] = "max_length"
target_padding: Union[bool, str] = "max_length"
max_target_length: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
model_input_name = self.processor.model_input_names[0]
# dataloader returns a list of features which we convert to a dict
input_features = {model_input_name: [feature[model_input_name] for feature in features]}
label_features = {"input_ids": [feature["labels"] for feature in features]}
# reformat list to dict and set to pytorch format
batch = self.processor.feature_extractor.pad(
input_features,
padding=self.input_padding,
return_tensors="np",
)
labels_batch = self.processor.tokenizer.pad(
label_features,
max_length=self.max_target_length,
padding=self.target_padding,
return_tensors="np",
)
# if bos token is appended in previous tokenization step,
# cut bos token here as it's append later anyways
labels = labels_batch["input_ids"]
if set(np.unique(labels[:, 0])).issubset({self.decoder_start_token_id, self.decoder_prev_token_id}):
decoder_input_ids = labels[:, :-1]
labels = labels[:, 1:]
labels_batch.attention_mask = labels_batch.attention_mask[:, 1:]
else:
decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id)
# replace padding with -100 to ignore correctly when computing the loss
labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1))
labels = labels.filled(fill_value=-100)
# replace initial prompt tokens with -100 to ignore correctly when computing the loss
bos_index = np.argmax(labels == self.decoder_start_token_id, axis=1)
prompt_mask = np.arange(labels.shape[1]) < bos_index[:, None]
labels = np.where(prompt_mask, -100, labels)
batch["labels"] = labels
batch["decoder_input_ids"] = decoder_input_ids
return batch
def get_data_loader(
seed: int,
dataset: IterableDataset,
batch_size: int,
data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding,
shuffle: bool = True,
drop_last: bool = True,
dataloader_num_workers: int = 0,
skip_batches: int = 0,
pin_memory: bool = True,
prefetch_size: int = 0,
) -> DataLoader:
"""
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
Args:
seed (int): Numpy seed for generating pseudo random numbers. Used if shuffling the dataset.
dataset (IterableDataset): streaming dataset from which to load the data.
batch_size (int): how many samples per batch to load.
data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a
mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.
shuffle (bool, optional): set to `True` to have the batches reshuffled.
drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If ``False`` and
the size of dataset is not divisible by the batch size, then the last batch
will be smaller. (default: ``False``)
dataloader_num_workers (int, optional): how many subprocesses to use for data
loading. ``0`` means that the data will be loaded in the main process.
(default: ``0``)
skip_batches (int, optional): Efficiently skip the first `skip_batches`.
pin_memory (bool, optional): If ``True``, the data loader will copy Tensors
into device/CUDA pinned memory before returning them. If your data elements
are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type,
see the example below.
"""
if shuffle:
dataset = dataset.shuffle(seed)
if skip_batches > 0:
dataset = dataset.skip(skip_batches * batch_size)
if prefetch_size > 0:
dataset = IterableWrapper(dataset)
dataset = dataset.prefetch(prefetch_size)
data_loader = DataLoader(
dataset,
batch_size=batch_size,
drop_last=drop_last,
pin_memory=pin_memory,
collate_fn=data_collator,
num_workers=dataloader_num_workers,
)
return data_loader
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def rotate_checkpoints(
save_total_limit=None, use_mtime=False, output_dir=None, checkpoint_prefix="checkpoint"
) -> None:
if save_total_limit is None or save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
checkpoints_sorted = sorted_checkpoints(
use_mtime=use_mtime, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix
)
if len(checkpoints_sorted) <= save_total_limit:
return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
shutil.rmtree(checkpoint, ignore_errors=True)
def to_fp32(t):
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
def to_bf16(t):
return jax.tree_map(lambda x: x.astype(jnp.bfloat16) if x.dtype == jnp.float32 else x, t)
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray
max_grad_norm: float
def apply_gradients(self, *, grads, to_dtype: to_fp32, **kwargs):
"""Updates `step`, `params`, `opt_state` and `**kwargs` in return value, clipping the
gradients by the maximum grad norm.
Note that internally this function calls `.tx.update()` followed by a call
to `optax.apply_updates()` to update `params` and `opt_state`.
Args:
grads: Gradients that have the same pytree structure as `.params`.
**kwargs: Additional dataclass attributes that should be `.replace()`-ed.
Returns:
An updated instance of `self` with `step` incremented by one, `params`
and `opt_state` updated by applying `grads`, and additional attributes
replaced as specified by `kwargs`.
"""
# clip gradients by global l2 norm
casted_max_grad_norm = to_dtype(self.max_grad_norm)
g_norm = linear_algebra.global_norm(grads)
g_norm = jnp.maximum(casted_max_grad_norm, g_norm)
grads = jax.tree_map(lambda t: (t / g_norm) * casted_max_grad_norm, grads)
# perform update step in fp32 and subsequently downcast optimizer states if mixed precision training
# grads and opt_state in bf16 (need to upcast), params in fp32 (leave as is)
updates, new_opt_state = self.tx.update(to_fp32(grads), to_fp32(self.opt_state), self.params)
new_params = optax.apply_updates(self.params, updates)
return self.replace(
step=self.step + 1,
params=new_params,
opt_state=to_dtype(new_opt_state),
**kwargs,
)
@classmethod
def create(cls, *, apply_fn, params, tx, to_dtype: to_fp32, **kwargs):
"""Creates a new instance with `step=0` and initialized `opt_state`."""
# downcast optimizer state to bf16 if mixed-precision training
opt_state = tx.init(to_dtype(params))
return cls(
step=0,
apply_fn=apply_fn,
params=params,
tx=tx,
opt_state=opt_state,
**kwargs,
)
def replicate(self):
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
def unreplicate(self):
return jax_utils.unreplicate(self)
def save_state(self, output_dir, save_total_limit=None, checkpoint_prefix="checkpoint"):
step = int(jax.device_get(unreplicate(self.step)))
serialized_state = to_bytes(self.unreplicate())
output_file = Path(os.path.join(output_dir, f"{checkpoint_prefix}-{step}", "train_state.msgpack"))
output_file.parent.mkdir(exist_ok=True, parents=True)
with output_file.open("wb") as f:
f.write(serialized_state)
logger.info(f"Flax train state saved in {output_file}")
rotate_checkpoints(
save_total_limit=save_total_limit, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix
)
def save_hf_weights(
student_state: TrainState,
student_model: FlaxWhisperForConditionalGeneration,
processor: WhisperProcessor,
output_dir: str,
cur_step: int,
total_train_steps: int,
use_scan: bool = True,
checkpoint_prefix: str = "checkpoint",
) -> None:
# always disable scan in the params / model so that we can load from PyTorch directly - this is a no-op if we're not using scan for training
student_state_params = unreplicate(student_state.params)
student_state_params = student_model.convert_scan_to_unroll(student_state_params)
student_params = jax.device_get(student_state_params)
student_model.disable_scan()
if cur_step != total_train_steps:
output_dir = os.path.join(output_dir, f"{checkpoint_prefix}-{cur_step}")
os.makedirs(output_dir, exist_ok=True)
student_model.save_pretrained(output_dir, params=student_params)
processor.save_pretrained(output_dir)
# re-enable scan only if required for training
if use_scan:
student_model.enable_scan()
def write_train_metric(summary_writer, train_metrics, train_time, step, logging_steps):
summary_writer.scalar("train/time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
steps_arr = np.arange(0, step, logging_steps)[-len(vals) :]
tag = f"train/{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, steps_arr[i])
def write_eval_metric(summary_writer, eval_metrics, step, prefix="eval"):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"{prefix}/{metric_name}", value, step)
def write_wandb_metric(wandb_logger, metrics, train_time, step, epoch, prefix="train"):
log_metrics = {}
for k, v in metrics.items():
log_metrics[f"{prefix}/{k}"] = v
log_metrics[f"{prefix}/time"] = train_time
log_metrics[f"{prefix}/epoch"] = epoch
wandb_logger.log(log_metrics, step)
def write_wandb_pred(
wandb_logger, pred_str, label_str, norm_pred_str, norm_label_str, cur_step, prefix="eval", num_lines=200000
):
# pretty name for current step: step 50000 -> step 50k
cur_step_pretty = f"{int(cur_step // 1000)}k" if cur_step > 1000 else cur_step
# convert str data to a wandb compatible format
str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))]
# log as a table with the appropriate headers
wandb_logger.log(
{
f"predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table(
columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data[:num_lines]
)
},
cur_step,
)
# log incorrect normalised predictions
str_data = np.asarray(str_data)
str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]]
# log as a table with the appropriate headers
wandb_logger.log(
{
f"incorrect_predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table(
columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data_incorrect[:num_lines]
)
},
cur_step,
)
def create_learning_rate_fn(
num_train_steps: int, lr_scheduler_type: str, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
lr_scheduler_types = ("linear", "constant_with_warmup")
if lr_scheduler_type not in lr_scheduler_types:
raise ValueError(
f"lr_scheduler_type of type {lr_scheduler_type} not supported, choose from {lr_scheduler_types}."
)
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate,
end_value=0 if lr_scheduler_type == "linear" else learning_rate,
transition_steps=num_train_steps - num_warmup_steps,
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def convert_dataset_str_to_list(
dataset_names,
dataset_config_names,
splits=None,
text_column_names=None,
dataset_samples=None,
default_split="train",
):
if isinstance(dataset_names, str):
dataset_names = dataset_names.split("+")
# we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary
for i in range(len(dataset_names)):
ds_name = dataset_names[i]
dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name
dataset_config_names = dataset_config_names.split("+")
splits = splits.split("+") if splits is not None else None
text_column_names = text_column_names.split("+") if text_column_names is not None else None
dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
# basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
if len(dataset_names) != len(dataset_config_names):
raise ValueError(
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
f" {len(dataset_config_names)} configs."
)
if splits is not None and len(splits) != len(dataset_names):
raise ValueError(
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
)
if text_column_names is not None and len(text_column_names) != len(dataset_names):
raise ValueError(
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
f" {len(text_column_names)} text column names."
)
if dataset_samples is not None:
if len(dataset_samples) != len(dataset_names):
raise ValueError(
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
f"{len(dataset_samples)} samples."
)
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
else:
dataset_samples = [None] * len(dataset_names)
text_column_names = (
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
)
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
dataset_names_dict = []
for i, ds_name in enumerate(dataset_names):
dataset_names_dict.append(
{
"name": ds_name,
"config": dataset_config_names[i],
"split": splits[i],
"text_column_name": text_column_names[i],
"samples": dataset_samples[i],
}
)
return dataset_names_dict
def load_multiple_datasets(
dataset_names: Union[List, str],
dataset_config_names: Union[List, str],
splits: Optional[Union[List, str]] = None,
text_column_names: Optional[List] = None,
sampling_rate: Optional[int] = 16000,
stopping_strategy: Optional[str] = "first_exhausted",
dataset_samples: Optional[Union[List, np.array]] = None,
streaming: bool = True,
seed: int = None,
**kwargs,
) -> IterableDataset:
dataset_names_dict = convert_dataset_str_to_list(
dataset_names, dataset_config_names, splits, text_column_names, dataset_samples
)
if dataset_samples is not None:
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
else:
probabilities = None
if len(dataset_names_dict) == 1:
dataset_dict = dataset_names_dict[0]
# we have a single dataset so just return it as is
return load_dataset(
dataset_dict["name"],
dataset_dict["config"],
split=dataset_dict["split"],
streaming=streaming,
**kwargs,
)
all_datasets = []
# iterate over the datasets we want to interleave
for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
dataset = load_dataset(
dataset_dict["name"],
dataset_dict["config"],
split=dataset_dict["split"],
streaming=streaming,
**kwargs,
)
# resample to specified sampling rate
dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
dataset = dataset.remove_columns(
set(dataset.features.keys()) - {"audio", dataset_dict["text_column_name"], "whisper_transcript"}
)
all_datasets.append(dataset)
if streaming:
interleaved_dataset = interleave_datasets(
all_datasets,
stopping_strategy=stopping_strategy,
probabilities=probabilities,
seed=seed,
)
else:
interleaved_dataset = concatenate_datasets(all_datasets)
return interleaved_dataset
def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> dict:
"""Helper function to map the student layer i to the teacher layer j whose output we'd like them to emulate. Used
for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers
in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer
3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer
2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely
the output of this function for the arguments (student_layers=3, teacher_layers=12)."""
layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int)
layer_intervals[-1] = teacher_layers - 1
layer_map = {}
for student_layer, teacher_layer in enumerate(layer_intervals):
layer_map[student_layer] = teacher_layer
return layer_map
class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor):
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation
computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation
in transformers, and matches to within 1e-5 abs tolerance.
"""
waveform = torch.from_numpy(waveform).type(torch.float32)
window = torch.hann_window(self.n_fft)
stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
mel_spec = mel_filters.T @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec.numpy()
def main():
# 1. Parse input arguments
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your JAX/Flax versions.
send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax")
# 2. Define remote logging - do this early so that we get the full traceback on our remote logs
# Enable tensorboard only on the master node
has_tensorboard = is_tensorboard_available()
if has_tensorboard:
if jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
summary_writer = SummaryWriter(log_dir=os.path.join(Path(training_args.output_dir), "runs"))
except ImportError as ie:
has_tensorboard = False
logger.warning(
"Unable to display metrics through TensorBoard because some package" f" are not installed: {ie}"
)
else:
logger.warning(
"Unable to display metrics through TensorBoard because the package is not"
" installed: Please run `pip install tensorboard` to enable."
)
# Enable wandb only on the master node
has_wandb = is_wandb_available()
if has_wandb:
import wandb as wandb_logger
# Set up wandb run
if jax.process_index() == 0:
wandb_logger.init(
project=data_args.wandb_project,
name=data_args.wandb_name,
job_type=data_args.wandb_job_type,
dir=data_args.wandb_dir,
save_code=data_args.save_code_to_wandb,
)
else:
logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.")
# 3. Setup local logging
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
# Set the verbosity to info of the Transformers logger.
# We only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
logger.info("Training/evaluation parameters %s", training_args)
# Check the output dir is valid
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not"
" empty. Use `--overwrite_output_dir` to overcome."
)
# 4. Handle the repository creation
if training_args.push_to_hub:
if training_args.hub_model_id is None:
repo_name = get_full_repo_name(
Path(training_args.output_dir).absolute().name,
token=training_args.hub_token,
)
else:
repo_name = training_args.hub_model_id
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(
training_args.output_dir,
clone_from=repo_name,
token=training_args.hub_token,
)
if training_args.compilation_cache:
cc.initialize_cache(os.path.join(model_args.cache_dir, "jax_cache"))
# 5. Load dataset
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
# set seed for determinism
set_seed(training_args.seed)
if training_args.do_train:
raw_datasets["train"] = load_multiple_datasets(
data_args.train_dataset_name,
data_args.train_dataset_config_name,
splits=data_args.train_split_name,
streaming=data_args.streaming,
dataset_samples=data_args.train_dataset_samples,
seed=training_args.seed,
cache_dir=data_args.dataset_cache_dir,
token=True if model_args.use_auth_token else None,
)
if training_args.do_eval:
dataset_names_dict = convert_dataset_str_to_list(
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
(
data_args.eval_dataset_config_name
if data_args.eval_dataset_config_name
else data_args.train_dataset_config_name
),
splits=data_args.eval_split_name,
text_column_names=data_args.eval_text_column_name,
)
all_eval_splits = []
if len(dataset_names_dict) == 1:
# load a single eval set
dataset_dict = dataset_names_dict[0]
all_eval_splits.append("eval")
raw_datasets["eval"] = load_dataset(
dataset_dict["name"],
dataset_dict["config"],
split=dataset_dict["split"],
cache_dir=data_args.dataset_cache_dir,
token=True if model_args.use_auth_token else None,
streaming=data_args.streaming,
)
else:
# load multiple eval sets
for dataset_dict in dataset_names_dict:
if dataset_dict["name"] == "esb/diagnostic-dataset":
# for the ESB diagnostic dataset, the dataset name is effectively the config
pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}"
else:
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
all_eval_splits.append(pretty_name)
raw_datasets[pretty_name] = load_dataset(
dataset_dict["name"],
dataset_dict["config"],
split=dataset_dict["split"],
cache_dir=data_args.dataset_cache_dir,
token=True if model_args.use_auth_token else None,
streaming=data_args.streaming,
)
features = raw_datasets[pretty_name].features.keys()
if "text" not in features:
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
dataset_dict["text_column_name"], "text"
)
raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"}
)
if not training_args.do_train and not training_args.do_eval:
raise ValueError(
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
)
raw_datasets_train_features = list(raw_datasets["train"].features.keys())
if data_args.audio_column_name not in raw_datasets_train_features:
raise ValueError(
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset"
f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to"
" the correct audio column - one of"
f" {', '.join(raw_datasets_train_features)}."
)
if data_args.train_text_column_name not in raw_datasets_train_features:
raise ValueError(
f"--train_text_column_name {data_args.train_text_column_name} not found in dataset"
f" '{data_args.dataset_name}'. Make sure to set `--train_text_column_name` to the"
" correct text column - one of"
f" {', '.join(raw_datasets_train_features)}."
)
# 6. Load pretrained model, tokenizer, and feature extractor
config = WhisperConfig.from_pretrained(
(model_args.config_name if model_args.config_name else model_args.model_name_or_path),
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
)
feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained(
(model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
)
tokenizer = WhisperTokenizerFast.from_pretrained(
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
)
# override timestamp tokens until tokenizer issues are fixed in transformers
timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
tokenizer.add_tokens(timestamps)
config.update(
{
"activation_dropout": model_args.activation_dropout,
"attention_dropout": model_args.attention_dropout,
"dropout": model_args.dropout,
}
)
if training_args.precision == "full_mixed":
# forward pass, backward pass and optimiser states in bf16
dtype = jnp.bfloat16
to_dtype = to_bf16
elif training_args.precision == "half_mixed" or model_args.dtype == "bfloat16":
# forward pass in bf16, backward pass and optimiser states in fp32
dtype = jnp.bfloat16
to_dtype = to_fp32
else:
if training_args.precision != "full":
raise ValueError(
f"`precision` should be one of: `full`, `half_mixed` or `full_mixed`, got {training_args.precision}"
)
# forward pass, backward pass and optimiser states in fp32
dtype = jnp.float32
to_dtype = to_fp32
student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
config=config,
dtype=dtype,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
subfolder=model_args.subfolder,
token=True if model_args.use_auth_token else None,
_do_init=False,
use_scan=model_args.load_with_scan_weights,
)
teacher_model, teacher_params = FlaxWhisperForConditionalGeneration.from_pretrained(
model_args.teacher_model_name_or_path,
# config=config,
dtype=dtype,
cache_dir=model_args.cache_dir,
# revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
_do_init=False,
)
if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None:
raise ValueError(
f"Make sure that `config.decoder_start_token_id` is correctly defined for both the "
f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the "
f"student and {teacher_model.config.decoder_start_token_id} for the teacher."
)
# enable scan / gradient checkpointing if necessary
if training_args.use_scan:
student_model.enable_scan() # to enable scan in the nn.Module
student_params = student_model.convert_unroll_to_scan(student_params) # to convert the unrolled params to scan
teacher_model.enable_scan() # faster compile time (even though we don't train the teacher)
teacher_params = teacher_model.convert_unroll_to_scan(teacher_params)
if training_args.gradient_checkpointing:
student_model.enable_gradient_checkpointing() # to enable checkpointing in the nn.Module, there is no change to the params structure
teacher_model.enable_gradient_checkpointing()
if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
# We need to set the language and task ids for previously multilingual checkpoints - for now we hardcode this to English
tokenizer.set_prefix_tokens(language="English", task="transcribe", predict_timestamps=False)
student_model.generation_config.update(
**{
"language": "<|en|>",
"task": "transcribe",
}
)
# 7. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name,
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
)
# 8. Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate)
max_label_length = (
data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length
)
audio_column_name = data_args.audio_column_name
num_workers = data_args.preprocessing_num_workers
dataloader_num_workers = training_args.dataloader_num_workers
dataloader_prefetch_size = data_args.prefetch_size
train_text_column_name = data_args.train_text_column_name
eval_text_column_name = "text"
model_input_name = feature_extractor.model_input_names[0]
normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer)
wer_threshold = data_args.wer_threshold
round_timestamps = data_args.round_timestamps
if training_args.do_train and data_args.max_train_samples is not None:
raw_datasets["train"] = (
raw_datasets["train"].take(data_args.max_train_samples)
if data_args.streaming
else raw_datasets["train"].select(range(data_args.max_train_samples))
)
if training_args.do_eval and data_args.max_eval_samples is not None:
for eval_split in all_eval_splits:
raw_datasets[eval_split] = (
raw_datasets[eval_split].take(data_args.max_eval_samples)
if data_args.streaming
else raw_datasets[eval_split].select(range(data_args.max_eval_samples))
)
def is_wer_in_range(ground_truth, whisper_transcript):
norm_ground_truth = normalizer(ground_truth)
if len(norm_ground_truth) > 0 and whisper_transcript is not None:
norm_whisper_transcript = normalizer(whisper_transcript)
wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth])
return wer < wer_threshold
else:
# filter automatically since we can't know the WER
return False
filter_by_wer_threshold = partial(
raw_datasets["train"].filter,
function=is_wer_in_range,
input_columns=[eval_text_column_name, train_text_column_name],
)
if wer_threshold is not None:
raw_datasets["train"] = (
filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer")
if not data_args.streaming
else filter_by_wer_threshold()
)
def has_timestamp_tokens(input_str):
"""
Identify whether the input string contains timestamp tokens, of the form <|0.00|>, by searching for
pairs of left and right-angle brackets.
"""
return bool(re.search("\<[^\>]*\>", input_str))
def round_timestamp_tokens(input_str: str, ndigits: int = 1):
timestamps = re.findall("\<[^\>]*\>", input_str, re.DOTALL)
for token in timestamps:
# extract time digits from timestamp token, e.g. <|6.24|> to 6.24
time_digit = token[2:-2]
# round to specified number of digits, e.g. 6.24 to 6.2
time_digit = round(float(time_digit), ndigits=ndigits)
# replace in original string with the same precision, e.g. <|6.24|> to <|6.20|>
input_str = input_str.replace(token, "<|{:.2f}|>".format(time_digit))
return input_str
def prepare_train_dataset(batch):
# process audio input
sample = batch[audio_column_name]
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
batch[model_input_name] = inputs.get(model_input_name)[0]
batch["input_length"] = len(sample["array"])
# process text targets
input_str = batch[train_text_column_name]
# prompt & timestamp processing: for now, we only do one or the other
if input_str.startswith("<|startoftranscript|>") or input_str.startswith("<|startofprev|>"):
# prompted target text already has special ids added, so don't add them here
batch["labels"] = tokenizer(input_str, add_special_tokens=False).input_ids
return batch
has_timestamps = has_timestamp_tokens(input_str)
if has_timestamps:
predict_timestamps = bool(np.random.binomial(1, data_args.timestamp_probability))
if not predict_timestamps:
# filter timestamp token ids if not part of the prediction task
input_str = tokenizer._filter_timestamp_ids(input_str)
elif round_timestamps:
input_str = round_timestamp_tokens(input_str)
else:
predict_timestamps = False
tokenizer.set_prefix_tokens(language="English", task="transcribe", predict_timestamps=predict_timestamps)
input_ids = tokenizer(input_str).input_ids
batch["labels"] = input_ids
return batch
def prepare_eval_dataset(batch):
# process audio
sample = batch[audio_column_name]
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
# process audio length
batch[model_input_name] = inputs.get(model_input_name)[0]
batch["input_length"] = len(sample["array"])
# process targets
input_str = batch[eval_text_column_name]
batch["labels"] = tokenizer(input_str).input_ids
return batch
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
if training_args.do_train:
map_fn_train = partial(
raw_datasets["train"].map, function=prepare_train_dataset, remove_columns=raw_datasets_train_features
)
vectorized_datasets["train"] = (
map_fn_train(num_proc=num_workers, desc="preprocess train dataset")
if not data_args.streaming
else map_fn_train()
)
if training_args.do_eval:
for eval_split in all_eval_splits:
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
map_fn_eval = partial(
raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
)
vectorized_datasets[eval_split] = (
map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset")
if not data_args.streaming
else map_fn_eval()
)
# filter training data with inputs longer than max_input_length
def is_audio_in_length_range(length):
return min_input_length < length < max_input_length
filter_by_audio_fn = partial(
vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"]
)
vectorized_datasets = (
filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length")
if not data_args.streaming
else filter_by_audio_fn()
)
# filter training data with labels longer than max_label_length
def is_labels_in_length_range(labels):
return 0 < len(labels) < max_label_length
filter_by_labels_fn = partial(
vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
)
vectorized_datasets = (
filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
if not data_args.streaming
else filter_by_labels_fn()
)
# for large datasets it is advised to run the preprocessing on a
# single machine first with `args.preprocessing_only` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step `args.preprocessing_only` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only:
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
return
# 8. Load Metric
metric = evaluate.load("wer")
# convention is that we space all punctuation *except* apostrophes
all_punctuation = list(string.punctuation.replace("'", ""))
return_timestamps = data_args.return_timestamps if data_args.timestamp_probability > 0 else False
def compute_metrics(preds, labels):
# replace padded labels by the padding token
for idx in range(len(labels)):
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps)
# we do not want to group tokens when computing the metrics
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
# space punctuation for orthographic WER (c.f. ESB paper https://arxiv.org/abs/2210.13352)
spaced_pred_str = [
pred_str[i].replace(punctuation, f" {punctuation} ")
for punctuation in all_punctuation
for i in range(len(pred_str))
]
spaced_label_str = [
label_str[i].replace(punctuation, f" {punctuation} ")
for punctuation in all_punctuation
for i in range(len(label_str))
]
wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str)
# normalize everything and re-compute the WER
norm_pred_str = [normalizer(pred) for pred in pred_str]
norm_label_str = [normalizer(label) for label in label_str]
# for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here
pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
# filtering step to only evaluate the samples that correspond to non-zero normalized references:
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str
# 9. Save feature extractor, tokenizer, config and generation config
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
student_model.generation_config.save_pretrained(
training_args.output_dir
) # generation config stays bound to model to make it easy to jit
processor = WhisperProcessor.from_pretrained(training_args.output_dir)
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding(
processor=processor,
decoder_start_token_id=student_model.config.decoder_start_token_id, # <|startoftranscript|>
decoder_prev_token_id=tokenizer.all_special_ids[-3], # <|startofprev|>
input_padding="longest",
target_padding="max_length",
max_target_length=max_label_length,
)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
rng, dropout_rng = jax.random.split(rng)
# Store some constants
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
eval_batch_size = per_device_eval_batch_size * jax.device_count()
if not data_args.streaming and training_args.max_steps < 0:
num_epochs = int(training_args.num_train_epochs)
steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size
total_train_steps = steps_per_epoch * num_epochs
elif training_args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
total_train_steps = int(training_args.max_steps)
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
num_epochs = sys.maxsize
steps_per_epoch = total_train_steps
else:
raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")
if training_args.eval_steps is None:
logger.info(
f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
)
eval_steps = steps_per_epoch
else:
eval_steps = training_args.eval_steps
# Create learning rate schedule
linear_decay_lr_schedule_fn = create_learning_rate_fn(
total_train_steps * gradient_accumulation_steps,
training_args.lr_scheduler_type,
training_args.warmup_steps * gradient_accumulation_steps,
training_args.learning_rate,
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
# find out all LayerNorm parameters
layer_norm_candidates = [
"layer_norm",
"self_attn_layer_norm",
"final_layer_norm",
"encoder_attn_layer_norm",
]
layer_norm_named_params = {
layer[-2:]
for layer_norm_name in layer_norm_candidates
for layer in flat_params.keys()
if layer_norm_name in "".join(layer).lower()
}
flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
if gradient_accumulation_steps > 1:
# accumulate gradients and apply once every k steps
adamw = optax.MultiSteps(adamw, every_k_schedule=gradient_accumulation_steps)
share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model
encoder_layer_mapping = get_layers_to_supervise(
student_model.config.encoder_layers, teacher_model.config.encoder_layers
)
decoder_layer_mapping = get_layers_to_supervise(
student_model.config.decoder_layers, teacher_model.config.decoder_layers
)
# Setup train state
student_state = TrainState.create(
apply_fn=student_model.decode if share_hidden_states else student_model.__call__,
params=student_params,
tx=adamw,
to_dtype=to_dtype,
dropout_rng=dropout_rng,
max_grad_norm=training_args.max_grad_norm,
)
if training_args.resume_from_checkpoint is not None:
if os.path.isfile(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")):
logger.info(
f"Checkpoint detected, resuming training at {training_args.resume_from_checkpoint}. To avoid "
"this behavior, omit the resume_from_checkpoint argument."
)
with Path(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")).open("rb") as f:
student_state = from_bytes(student_state, f.read())
else:
logger.warning(
f"Checkpoint {training_args.resume_from_checkpoint} not detected, training from scratch. Ensure "
f"you pass the path to a folder with a valid checkpoint for your model."
)
def cross_entropy_loss(logits, labels):
vocab_size = logits.shape[-1]
# optax onehot always returns a float32 device array, need to downcast if performing mixed precision training
onehot_targets = to_dtype(onehot(labels, vocab_size))
loss = optax.softmax_cross_entropy(logits, onehot_targets)
# ignore padded tokens from loss, i.e. where labels are not set to -100
padding = labels >= 0
loss = loss * padding
loss = loss.sum()
num_labels = padding.sum()
return loss, num_labels
# temperature smoothed kl-divergence
def kl_divergence(target_distribution, log_predicted_distribution, labels, eps=1e-20):
divergence = -target_distribution * (log_predicted_distribution - jnp.log(target_distribution + eps))
# ignore padded tokens from divergence, i.e. where labels are not set to -100
padding_mask = labels >= 0
padding_mask = jnp.expand_dims(padding_mask, axis=-1)
divergence = (divergence * padding_mask).sum()
return to_dtype(divergence) # respect the dtype of the backprop
def mean_square_error_loss(student_outputs, teacher_outputs):
mse = dtype(0.0)
# tie encoder embeddings
mse += jnp.mean(
jnp.square(teacher_outputs.encoder_hidden_states[0] - student_outputs.encoder_hidden_states[0])
)
for student_layer_id, teacher_layer_id in encoder_layer_mapping.items():
# offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state
student_hidden_state = student_outputs.encoder_hidden_states[student_layer_id + 1]
teacher_hidden_state = teacher_outputs.encoder_hidden_states[teacher_layer_id + 1]
mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state))
# student_attention = student_outputs.encoder_attentions[student_layer_id]
# teacher_attention = teacher_outputs.encoder_attentions[teacher_layer_id]
# mse += jnp.mean(jnp.square(student_attention - teacher_attention))
# tie decoder embeddings
mse += jnp.mean(
jnp.square(teacher_outputs.decoder_hidden_states[0] - student_outputs.decoder_hidden_states[0])
)
for student_layer_id, teacher_layer_id in decoder_layer_mapping.items():
# offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state
student_hidden_state = student_outputs.decoder_hidden_states[student_layer_id + 1]
teacher_hidden_state = teacher_outputs.decoder_hidden_states[teacher_layer_id + 1]
mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state))
# student_attention = student_outputs.decoder_attentions[student_layer_id]
# teacher_attention = teacher_outputs.decoder_attentions[teacher_layer_id]
# mse += jnp.mean(jnp.square(student_attention - teacher_attention))
# student_cross_attention = student_outputs.cross_attentions[student_layer_id]
# teacher_cross_attention = teacher_outputs.cross_attentions[teacher_layer_id]
# mse += jnp.mean(jnp.square(student_cross_attention - teacher_cross_attention))
return to_dtype(mse) # respect the dtype of the backprop
# Define gradient update step fn
def train_step(
student_state,
teacher_params,
batch,
freeze_encoder,
share_hidden_states,
temperature=2.0,
):
dropout_rng, new_dropout_rng = jax.random.split(student_state.dropout_rng)
def compute_loss(student_params):
labels = batch.pop("labels")
output_hidden_states = not share_hidden_states and training_args.mse_weight > 0.0
teacher_outputs = teacher_model(
**batch,
params=teacher_params,
freeze_encoder=True,
output_hidden_states=output_hidden_states,
train=False,
)
if share_hidden_states:
# if the student and teacher share the same frozen encoder then we don't have to recompute the
# encoder hidden-states for the student model, we can just re-use from the teacher
encoder_hidden_states = jax.lax.stop_gradient(teacher_outputs.encoder_last_hidden_state)
encoder_outputs = FlaxBaseModelOutput(last_hidden_state=encoder_hidden_states)
student_outputs = student_state.apply_fn(
decoder_input_ids=batch["decoder_input_ids"],
encoder_outputs=encoder_outputs,
params=student_params,
dropout_rng=dropout_rng,
train=True,
)
else:
# do the full forward pass for the student model (encoder + decoder)
student_outputs = student_state.apply_fn(
**batch,
params=student_params,
dropout_rng=dropout_rng,
freeze_encoder=freeze_encoder,
output_hidden_states=output_hidden_states,
train=True,
)
# CE (data) loss
ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels)
# rescale by temperature to ensure gradients scale correctly
teacher_distribution = jax.nn.softmax(teacher_outputs.logits / temperature, axis=-1)
# ensure no information flow backwards through teacher
teacher_distribution = jax.lax.stop_gradient(teacher_distribution)
# log softmax of student predictions for numerical stability
student_distribution = jax.nn.log_softmax(student_outputs.logits / temperature, axis=-1)
# KL-divergence loss (scaled by temperature)
kl_loss = kl_divergence(teacher_distribution, student_distribution, labels) * temperature**2
# MSE loss between enc-dec hidden-states and attentions
mse_loss = (
mean_square_error_loss(student_outputs, teacher_outputs)
if output_hidden_states
else jnp.zeros_like(kl_loss)
)
# use DistilBart formulation - only tune the MSE weight and take remaining HPs from DistilBERT
ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0
loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss
return loss, (
ce_loss,
kl_loss,
mse_loss,
num_labels,
)
grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
(loss, (ce_loss, kl_loss, mse_loss, num_labels)), grad = grad_fn(to_dtype(student_state.params))
# true loss = total loss / total samples
loss = jax.lax.psum(loss, "batch")
num_labels = jax.lax.psum(num_labels, "batch")
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
# true grad = total grad / total samples
grad = jax.lax.psum(grad, "batch")
grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
new_state = student_state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng, to_dtype=to_dtype)
# CE/KL/MSE losses for logging
ce_loss = jax.lax.psum(ce_loss, "batch")
ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss)
kl_loss = jax.lax.psum(kl_loss, "batch")
kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss)
mse_loss = jax.lax.psum(mse_loss, "batch")
mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss)
metrics = {
"loss": loss,
"learning_rate": linear_decay_lr_schedule_fn(student_state.step),
"ce_loss": ce_loss,
"kl_loss": kl_loss,
"mse_loss": mse_loss,
}
return new_state, metrics
# Define eval fn
def eval_step(student_params, teacher_params, batch):
labels = batch.pop("labels")
output_hidden_states = not share_hidden_states and training_args.mse_weight > 0
student_outputs = student_model(
**batch,
params=student_params,
output_hidden_states=output_hidden_states,
train=False,
)
student_distribution = jax.nn.log_softmax(student_outputs.logits, axis=-1)
ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels)
teacher_outputs = teacher_model(
**batch,
params=teacher_params,
output_hidden_states=output_hidden_states,
train=False,
)
teacher_distribution = jax.nn.softmax(teacher_outputs.logits, axis=-1)
# temperature is always 1 for eval
kl_loss = kl_divergence(teacher_distribution, student_distribution, labels)
mse_loss = (
mean_square_error_loss(student_outputs, teacher_outputs)
if output_hidden_states
else jnp.zeros_like(kl_loss)
)
ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0
loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss
# true loss = total loss / total samples
loss = jax.lax.psum(loss, "batch")
num_labels = jax.lax.psum(num_labels, "batch")
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
# CE/KL/MSE losses for logging
ce_loss = jax.lax.psum(ce_loss, "batch")
ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss)
kl_loss = jax.lax.psum(kl_loss, "batch")
kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss)
mse_loss = jax.lax.psum(mse_loss, "batch")
mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss)
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss, "mse_loss": mse_loss}
return metrics
# Define generation function
num_beams = (
training_args.generation_num_beams
if training_args.generation_num_beams is not None
else student_model.config.num_beams
)
# forcing the language and task tokens helps the model in its generations
gen_kwargs = {
"max_length": max_label_length,
"num_beams": num_beams,
"language": "<|en|>",
"task": "transcribe",
"return_timestamps": return_timestamps,
}
def generate_step(student_params, batch):
output_ids = student_model.generate(
batch[model_input_name],
attention_mask=batch.get("attention_mask"),
params=student_params,
**gen_kwargs,
)
return output_ids.sequences
# Replicate the train state on each device
student_state = student_state.replicate()
# Replicate the teacher params on each device
teacher_params = jax_utils.replicate(teacher_params)
# Create parallel version of the train and eval step
p_train_step = jax.pmap(
train_step,
"batch",
in_axes=(0, 0, 0, None, None, None),
donate_argnums=(0,),
static_broadcasted_argnums=(
3,
4,
),
)
p_eval_step = jax.pmap(eval_step, "batch")
p_generate_step = jax.pmap(generate_step, "batch")
logger.info("***** Running training *****")
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
logger.info(
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {total_train_steps}")
# ======================== Training ================================
train_time = 0
train_start = time.time()
train_metrics = []
batches_to_skip = jax.device_get(unreplicate(student_state.step))
cur_step = int(batches_to_skip) # will be zero if starting from scratch
epochs_trained = batches_to_skip // steps_per_epoch
steps_trained_progress_bar = tqdm(range(total_train_steps), desc="Train steps ... ", position=0)
steps_trained_progress_bar.update(batches_to_skip)
continue_training = True
minibatch_steps = 0
if batches_to_skip > 0:
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(f" Continuing training from epoch {epochs_trained}")
logger.info(f" Continuing training from global step {batches_to_skip}")
# Generate a training data loader by shuffling sampling indices from the train dataset
train_loader = get_data_loader(
training_args.seed,
vectorized_datasets["train"],
batch_size=train_batch_size,
data_collator=data_collator,
dataloader_num_workers=dataloader_num_workers,
skip_batches=batches_to_skip,
prefetch_size=dataloader_prefetch_size,
)
for epoch in range(epochs_trained, num_epochs):
if hasattr(train_loader, "dataset") and isinstance(train_loader.dataset, IterableDataset):
train_loader.dataset.set_epoch(epoch)
for batch in train_loader:
minibatch_steps += 1
update_step = minibatch_steps == gradient_accumulation_steps
if update_step:
steps_trained_progress_bar.update(1)
cur_step += 1
minibatch_steps = 0
batch = shard(batch.data)
student_state, train_metric = p_train_step(
student_state,
teacher_params,
batch,
training_args.freeze_encoder,
share_hidden_states,
training_args.temperature,
)
if cur_step % training_args.logging_steps == 0 and update_step:
train_metrics.append(train_metric)
train_metric_to_write = unreplicate(train_metric)
steps_trained_progress_bar.write(
f"Step... ({cur_step} / {total_train_steps} | Loss:"
f" {train_metric_to_write['loss']}, Learning Rate:"
f" {train_metric_to_write['learning_rate']})"
)
if has_wandb and jax.process_index() == 0:
write_wandb_metric(
wandb_logger,
train_metric_to_write,
train_time + time.time() - train_start,
cur_step,
epoch,
prefix="train",
)
# save checkpoint and weights after each save_steps and at the end of training
if (cur_step % training_args.save_steps == 0 and update_step) or cur_step == total_train_steps:
if jax.process_index() == 0:
save_hf_weights(
student_state,
student_model,
processor,
training_args.output_dir,
cur_step,
total_train_steps,
use_scan=training_args.use_scan,
)
if training_args.save_train_state:
student_state.save_state(
training_args.output_dir, save_total_limit=training_args.save_total_limit
)
if training_args.push_to_hub:
repo.push_to_hub(
commit_message=f"Saving train state of step {cur_step}",
blocking=False,
)
if training_args.do_eval and (
(cur_step % eval_steps == 0 and update_step) or cur_step == total_train_steps
):
train_time += time.time() - train_start
# ======================== Evaluating ==============================
for eval_split in all_eval_splits:
eval_metrics = []
eval_preds = []
eval_labels = []
eval_start = time.time()
eval_loader = get_data_loader(
training_args.seed,
vectorized_datasets[eval_split],
batch_size=eval_batch_size,
data_collator=data_collator,
shuffle=False,
drop_last=False,
dataloader_num_workers=dataloader_num_workers,
)
for batch in tqdm(eval_loader, desc=f"Evaluating {eval_split}...", position=2):
# Model forward
labels = batch["labels"]
metrics = pad_shard_unpad(
p_eval_step,
static_argnums=(
0,
1,
),
static_return=True,
)(
student_state.params,
teacher_params,
batch.data,
min_device_batch=per_device_eval_batch_size,
)
eval_metrics.append(metrics)
# generation
if training_args.predict_with_generate:
generated_ids = pad_shard_unpad(p_generate_step)(
student_state.params, batch.data, min_device_batch=per_device_eval_batch_size
)
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
eval_labels.extend(labels)
eval_time = time.time() - eval_start
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
# compute WER metric
wer_desc = ""
if training_args.predict_with_generate:
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
eval_preds, eval_labels
)
eval_metrics.update(wer_metric)
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
# Print metrics and update progress bar
steps_trained_progress_bar.write(
f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
f" {wer_desc})"
)
if has_tensorboard and jax.process_index() == 0:
write_eval_metric(
summary_writer,
eval_metrics,
cur_step,
prefix=eval_split,
)
if has_wandb and jax.process_index() == 0:
write_wandb_metric(wandb_logger, eval_metrics, eval_time, cur_step, epoch, prefix=eval_split)
if training_args.predict_with_generate:
write_wandb_pred(
wandb_logger,
pred_str,
label_str,
norm_pred_str,
norm_label_str,
cur_step,
prefix=eval_split,
)
if has_tensorboard and jax.process_index() == 0:
# we'll only log to tensorboard every eval steps
write_train_metric(
summary_writer,
train_metrics,
train_time,
cur_step,
training_args.logging_steps,
)
# flush the train metrics
train_start = time.time()
train_metrics = []
# break condition
if cur_step == total_train_steps:
continue_training = False
break
if not continue_training:
break
if __name__ == "__main__":
main()
|