--- license: mit language: - multilingual tags: - nlp base_model: Qwen/Qwen2.5-0.5B pipeline_tag: text-generation --- # NuExtract-tiny-v1.5 by NuMind 🔥 NuExtract-tiny-v1.5 is a fine-tuning of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B), trained on a private high-quality dataset for structured information extraction. It supports long documents and several languages (English, French, Spanish, German, Portuguese, and Italian). To use the model, provide an input text and a JSON template describing the information you need to extract. Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text. We also provide a 3.8B version which is based on Phi-3.5-mini-instruct: [NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) Check out the [blog post](https://numind.ai/blog/nuextract-1-5---multilingual-infinite-context-still-small-and-better-than-gpt-4o). Try the 3.8B model here: [Playground](https://huggingface.co/spaces/numind/NuExtract-v1.5) ⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to pure extraction tasks. ## Benchmark Zero-shot performance (English):

Few-shot fine-tuning:

## Usage To use the model: ```python import json import torch from transformers import AutoModelForCausalLM, AutoTokenizer def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000): template = json.dumps(json.loads(template), indent=4) prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts] outputs = [] with torch.no_grad(): for i in range(0, len(prompts), batch_size): batch_prompts = prompts[i:i+batch_size] batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device) pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens) outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True) return [output.split("<|output|>")[1] for output in outputs] model_name = "numind/NuExtract-tiny-v1.5" device = "cuda" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval() tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for superior performance and efficiency. Mistral 7B outperforms the best open 13B model (Llama 2) across all evaluated benchmarks, and the best released 34B model (Llama 1) in reasoning, mathematics, and code generation. Our model leverages grouped-query attention (GQA) for faster inference, coupled with sliding window attention (SWA) to effectively handle sequences of arbitrary length with a reduced inference cost. We also provide a model fine-tuned to follow instructions, Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and automated benchmarks. Our models are released under the Apache 2.0 license. Code: Webpage: """ template = """{ "Model": { "Name": "", "Number of parameters": "", "Number of max token": "", "Architecture": [] }, "Usage": { "Use case": [], "Licence": "" } }""" prediction = predict_NuExtract(model, tokenizer, [text], template)[0] print(prediction) ``` Sliding window prompting: ```python import json MAX_INPUT_SIZE = 20_000 MAX_NEW_TOKENS = 6000 def clean_json_text(text): text = text.strip() text = text.replace("\#", "#").replace("\&", "&") return text def predict_chunk(text, template, current, model, tokenizer): current = clean_json_text(current) input_llm = f"<|input|>\n### Template:\n{template}\n### Current:\n{current}\n### Text:\n{text}\n\n<|output|>" + "{" input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda") output = tokenizer.decode(model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True) return clean_json_text(output.split("<|output|>")[1]) def split_document(document, window_size, overlap): tokens = tokenizer.tokenize(document) print(f"\tLength of document: {len(tokens)} tokens") chunks = [] if len(tokens) > window_size: for i in range(0, len(tokens), window_size-overlap): print(f"\t{i} to {i + len(tokens[i:i + window_size])}") chunk = tokenizer.convert_tokens_to_string(tokens[i:i + window_size]) chunks.append(chunk) if i + len(tokens[i:i + window_size]) >= len(tokens): break else: chunks.append(document) print(f"\tSplit into {len(chunks)} chunks") return chunks def handle_broken_output(pred, prev): try: if all([(v in ["", []]) for v in json.loads(pred).values()]): # if empty json, return previous pred = prev except: # if broken json, return previous pred = prev return pred def sliding_window_prediction(text, template, model, tokenizer, window_size=4000, overlap=128): # split text into chunks of n tokens tokens = tokenizer.tokenize(text) chunks = split_document(text, window_size, overlap) # iterate over text chunks prev = template for i, chunk in enumerate(chunks): print(f"Processing chunk {i}...") pred = predict_chunk(chunk, template, prev, model, tokenizer) # handle broken output pred = handle_broken_output(pred, prev) # iterate prev = pred return pred ```