Serega6678
commited on
Commit
•
637d6b7
1
Parent(s):
2ca3de5
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,79 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
datasets:
|
4 |
+
- numind/NuNER
|
5 |
+
library_name: gliner
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
pipeline_tag: token-classification
|
9 |
+
tags:
|
10 |
+
- entity recognition
|
11 |
+
- NER
|
12 |
+
- named entity recognition
|
13 |
+
- zero shot
|
14 |
+
- zero-shot
|
15 |
---
|
16 |
+
|
17 |
+
NuZero - is the family of Zero-Shot Entity Recognition models inspired by [GLiNER](https://huggingface.co/papers/2311.08526) and built with insights we gathered throughout our work on [NuNER](https://huggingface.co/collections/numind/nuner-token-classification-and-ner-backbones-65e1f6e14639e2a465af823b).
|
18 |
+
|
19 |
+
The key difference between NuZero Token in comparison to GLiNER is the possibility to **detect entities that are longer than 12 tokens**, as NuZero Token operates on the token lever rather than on the span level. Also, NuZero token is 1% more intelligent on average.
|
20 |
+
|
21 |
+
<p align="center">
|
22 |
+
<img src="zero_shot_performance_unzero_token.png">
|
23 |
+
</p>
|
24 |
+
|
25 |
+
## Installation & Usage
|
26 |
+
|
27 |
+
```
|
28 |
+
!pip install gliner
|
29 |
+
```
|
30 |
+
|
31 |
+
**NuZero requires labels to be lower-cased**
|
32 |
+
|
33 |
+
```python
|
34 |
+
from gliner import GLiNER
|
35 |
+
|
36 |
+
model = GLiNER.from_pretrained("numind/NuZero_span")
|
37 |
+
|
38 |
+
# NuZero requires labels to be lower-cased!
|
39 |
+
labels = ["person", "award", "date", "competitions", "teams"]
|
40 |
+
labels [l.lower() for l in labels]
|
41 |
+
|
42 |
+
text = """
|
43 |
+
|
44 |
+
"""
|
45 |
+
|
46 |
+
entities = model.predict_entities(text, labels)
|
47 |
+
|
48 |
+
for entity in entities:
|
49 |
+
print(entity["text"], "=>", entity["label"])
|
50 |
+
```
|
51 |
+
|
52 |
+
## Fine-tuning
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
## Citation
|
58 |
+
### This work
|
59 |
+
```bibtex
|
60 |
+
@misc{bogdanov2024nuner,
|
61 |
+
title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data},
|
62 |
+
author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard},
|
63 |
+
year={2024},
|
64 |
+
eprint={2402.15343},
|
65 |
+
archivePrefix={arXiv},
|
66 |
+
primaryClass={cs.CL}
|
67 |
+
}
|
68 |
+
```
|
69 |
+
### Previous work
|
70 |
+
```bibtex
|
71 |
+
@misc{zaratiana2023gliner,
|
72 |
+
title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer},
|
73 |
+
author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
|
74 |
+
year={2023},
|
75 |
+
eprint={2311.08526},
|
76 |
+
archivePrefix={arXiv},
|
77 |
+
primaryClass={cs.CL}
|
78 |
+
}
|
79 |
+
```
|