Eagle2-2B / configuration_multi_backbone_channel_concatentation_model.py
Zhiding's picture
update
0adc73f
# --------------------------------------------------------
# Eagle2
# Copyright (c) 2025 NVIDIA
# Licensed under The Apache License [see LICENSE for details]
# --------------------------------------------------------
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from .configuration_siglip import SiglipVisionConfig
logger = logging.get_logger(__name__)
class MultiBackboneChannelConcatenationVisionModelConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MultiBackboneChannelConcatenationVisionModelConfig`]. It is used to
instantiate a vision encoder according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_path (str): Path to the vision model or its configuration.
mm_vision_select_layer (int, optional): The layer to select from the vision model
for multi-modal processing. Defaults to -2.
grid_size (int, optional): The size of the grid for vision processing. Defaults to 32.
**kwargs: Additional keyword arguments to be passed to the parent PretrainedConfig.
"""
model_type = 'MOB'
def __init__(
self,
vision_path,
mm_vision_select_layer=-2,
grid_size=32,
input_image_size=1024,
hidden_size='lazy_calculation',
image_size=1024,
freeze_backbones=None,
moe_version_type=None,
delay_load=False,
convnext_img_size=1024,
vision_tower_siglip_path=None,
vision_tower_convnext_path='convnext_xxlarge.clip_laion2b_soup',
normalize_type='siglip',
**kwargs,
):
super().__init__(**kwargs)
self.normalize_type = normalize_type
self.vision_path = vision_path
self.mm_vision_select_layer = mm_vision_select_layer
self.grid_size = grid_size
self.input_image_size = input_image_size
self.image_size = image_size
self.hidden_size = hidden_size
self.freeze_backbones = freeze_backbones
self.moe_version_type = moe_version_type
self.delay_load = delay_load
self.convnext_img_size = convnext_img_size
# other args. to make it compatable with eagle-next
self.vision_tower_siglip_path = vision_tower_siglip_path
self.vision_tower_convnext_path = vision_tower_convnext_path
self.vision_tower = self.vision_path[4:] # remove `MOB:` prefix
# asserts
assert image_size == input_image_size, f"input_image_size ({input_image_size}) != image_size ({image_size})"
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if 'vision_config' in config_dict:
config_dict = config_dict['vision_config']
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
)
return cls.from_dict(config_dict, **kwargs)