File size: 28,067 Bytes
b5dfaf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Optional, Tuple

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import is_torch_available, logging


logger = logging.get_logger(__name__)


if is_torch_available():
    import torch


def _compute_default_rope_parameters(
    config: Optional[PretrainedConfig] = None,
    device: Optional["torch.device"] = None,
    seq_len: Optional[int] = None,
    **rope_kwargs,
) -> Tuple["torch.Tensor", float]:
    """
    Computes the inverse frequencies according to the original RoPE implementation
    Args:
        config ([`~transformers.PretrainedConfig`]):
            The model configuration.
        device (`torch.device`):
            The device to use for initialization of the inverse frequencies.
        seq_len (`int`, *optional*):
            The current sequence length. Unused for this type of RoPE.
        rope_kwargs (`Dict`, *optional*):
            BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
    Returns:
        Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
        post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
    """
    if config is not None and len(rope_kwargs) > 0:
        raise ValueError(
            "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
            f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
        )
    if len(rope_kwargs) > 0:
        base = rope_kwargs["base"]
        dim = rope_kwargs["dim"]
    elif config is not None:
        base = config.rope_theta
        partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
        head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        dim = int(head_dim * partial_rotary_factor)

    attention_factor = 1.0  # Unused in this type of RoPE

    # Compute the inverse frequencies
    inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
    return inv_freq, attention_factor


def _compute_linear_scaling_rope_parameters(
    config: Optional[PretrainedConfig] = None,
    device: Optional["torch.device"] = None,
    seq_len: Optional[int] = None,
    **rope_kwargs,
) -> Tuple["torch.Tensor", float]:
    """
    Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev
    Args:
        config ([`~transformers.PretrainedConfig`]):
            The model configuration.
        device (`torch.device`):
            The device to use for initialization of the inverse frequencies.
        seq_len (`int`, *optional*):
            The current sequence length. Unused for this type of RoPE.
        rope_kwargs (`Dict`, *optional*):
            BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
    Returns:
        Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
        post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
    """
    if config is not None and len(rope_kwargs) > 0:
        raise ValueError(
            "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
            f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
        )
    if len(rope_kwargs) > 0:
        factor = rope_kwargs["factor"]
    elif config is not None:
        factor = config.rope_scaling["factor"]

    # Gets the default RoPE parameters
    inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)

    # Then applies linear scaling to the frequencies.
    # NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so
    # applying scaling to the inverse frequencies is equivalent.
    inv_freq /= factor
    return inv_freq, attention_factor


def _compute_dynamic_ntk_parameters(
    config: Optional[PretrainedConfig] = None,
    device: Optional["torch.device"] = None,
    seq_len: Optional[int] = None,
    **rope_kwargs,
) -> Tuple["torch.Tensor", float]:
    """
    Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
    Args:
        config ([`~transformers.PretrainedConfig`]):
            The model configuration.
        device (`torch.device`):
            The device to use for initialization of the inverse frequencies.
        seq_len (`int`, *optional*):
            The current sequence length, used to update the dynamic RoPE at inference time.
        rope_kwargs (`Dict`, *optional*):
            BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
    Returns:
        Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
        post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
    """
    # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
    if config is not None and len(rope_kwargs) > 0:
        raise ValueError(
            "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
            f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
        )
    if len(rope_kwargs) > 0:
        base = rope_kwargs["base"]
        dim = rope_kwargs["dim"]
        max_position_embeddings = rope_kwargs["max_position_embeddings"]
        factor = rope_kwargs["factor"]
    elif config is not None:
        base = config.rope_theta
        partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
        head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        dim = int(head_dim * partial_rotary_factor)
        max_position_embeddings = config.max_position_embeddings
        factor = config.rope_scaling["factor"]

    attention_factor = 1.0  # Unused in this type of RoPE

    # seq_len: default to max_position_embeddings, e.g. at init time
    seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings

    # Compute the inverse frequencies
    base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
    inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
    return inv_freq, attention_factor


def _compute_yarn_parameters(
    config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
) -> Tuple["torch.Tensor", float]:
    """
    Computes the inverse frequencies with NTK scaling. Please refer to the
    [original paper](https://arxiv.org/abs/2309.00071)
    Args:
        config ([`~transformers.PretrainedConfig`]):
            The model configuration.
        device (`torch.device`):
            The device to use for initialization of the inverse frequencies.
        seq_len (`int`, *optional*):
            The current sequence length. Unused for this type of RoPE.
        rope_kwargs (`Dict`, *optional*):
            BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
    Returns:
        Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
        post-processing scaling factor applied to the computed cos/sin.
    """
    # No need to keep BC with yarn, unreleased when this new pattern was created.
    if len(rope_kwargs) > 0:
        raise ValueError(
            f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
        )

    base = config.rope_theta
    partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
    dim = int(head_dim * partial_rotary_factor)
    max_position_embeddings = config.max_position_embeddings
    factor = config.rope_scaling["factor"]

    # Sets the attention factor as suggested in the paper
    attention_factor = config.rope_scaling.get("attention_factor")
    if attention_factor is None:
        attention_factor = 0.1 * math.log(factor) + 1.0

    # Optional config options
    # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
    beta_fast = config.rope_scaling.get("beta_fast") or 32
    beta_slow = config.rope_scaling.get("beta_slow") or 1

    # Compute the inverse frequencies
    def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
        """Inverse dimension formula to find the dimension based on the number of rotations"""
        return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))

    def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
        """Find dimension range bounds based on rotations"""
        low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
        high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
        return max(low, 0), min(high, dim - 1)

    def linear_ramp_factor(min, max, dim):
        if min == max:
            max += 0.001  # Prevent singularity

        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

    # Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
    # to expand the possible context length. In other words, interpolation = apply scaling factor.
    pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
    inv_freq_extrapolation = 1.0 / pos_freqs
    inv_freq_interpolation = 1.0 / (factor * pos_freqs)

    low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)

    # Get n-dimensional rotational scaling corrected for extrapolation
    inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
    inv_freq = (
        inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
        + inv_freq_extrapolation * inv_freq_extrapolation_factor
    )

    return inv_freq, attention_factor


def _compute_longrope_parameters(
    config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
) -> Tuple["torch.Tensor", float]:
    """
    Computes the inverse frequencies with LongRoPE scaling. Please refer to the
    [original implementation](https://github.com/microsoft/LongRoPE)
    Args:
        config ([`~transformers.PretrainedConfig`]):
            The model configuration.
        device (`torch.device`):
            The device to use for initialization of the inverse frequencies.
        seq_len (`int`, *optional*):
            The current sequence length. Unused for this type of RoPE.
        rope_kwargs (`Dict`, *optional*):
            BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
    Returns:
        Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
        post-processing scaling factor applied to the computed cos/sin.
    """
    # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
    # No need to keep BC with longrope, unreleased when this new pattern was created.
    if len(rope_kwargs) > 0:
        raise ValueError(
            "Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
            f"{rope_kwargs}"
        )

    base = config.rope_theta
    partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
    dim = int(head_dim * partial_rotary_factor)
    long_factor = config.rope_scaling["long_factor"]
    short_factor = config.rope_scaling["short_factor"]
    factor = config.rope_scaling.get("factor")
    attention_factor = config.rope_scaling.get("attention_factor")

    # NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
    # `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
    # values to compute the default attention scaling factor, instead of using `factor`.
    if hasattr(config, "original_max_position_embeddings"):
        max_position_embeddings = config.original_max_position_embeddings
        expanded_max_position_embeddings = config.max_position_embeddings
        factor = expanded_max_position_embeddings / max_position_embeddings
    else:
        max_position_embeddings = config.max_position_embeddings
        expanded_max_position_embeddings = max_position_embeddings * factor

    # Sets the attention factor as suggested in the paper
    if attention_factor is None:
        if factor <= 1.0:
            attention_factor = 1.0
        else:
            attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))

    # Compute the inverse frequencies -- scaled based on the target sequence length
    if expanded_max_position_embeddings > max_position_embeddings:
        ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device)
    else:
        ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device)
    inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim
    inv_freq = 1.0 / (ext_factors * base**inv_freq_shape)

    return inv_freq, attention_factor


def _compute_llama3_parameters(
    config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
) -> Tuple["torch.Tensor", float]:
    """
    Computes the inverse frequencies for llama 3.1.

    Args:
        config ([`~transformers.PretrainedConfig`]):
            The model configuration.
        device (`torch.device`):
            The device to use for initialization of the inverse frequencies.
        seq_len (`int`, *optional*):
            The current sequence length. Unused for this type of RoPE.
        rope_kwargs (`Dict`, *optional*):
            BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
    Returns:
        Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
        post-processing scaling factor applied to the computed cos/sin.
    """
    # Gets the default RoPE parameters
    inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)

    factor = config.rope_scaling["factor"]  # `8` in the original implementation
    low_freq_factor = config.rope_scaling["low_freq_factor"]  # `1` in the original implementation
    high_freq_factor = config.rope_scaling["high_freq_factor"]  # `4` in the original implementation
    old_context_len = config.rope_scaling["original_max_position_embeddings"]  # `8192` in the original implementation

    low_freq_wavelen = old_context_len / low_freq_factor
    high_freq_wavelen = old_context_len / high_freq_factor

    wavelen = 2 * math.pi / inv_freq
    # wavelen < high_freq_wavelen: do nothing
    # wavelen > low_freq_wavelen: divide by factor
    inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
    # otherwise: interpolate between the two, using a smooth factor
    smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
    smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
    is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
    inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)

    return inv_freq_llama, attention_factor


# This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
# from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
# parameterizations, as long as the callable has the same signature.
ROPE_INIT_FUNCTIONS = {
    "default": _compute_default_rope_parameters,
    "linear": _compute_linear_scaling_rope_parameters,
    "dynamic": _compute_dynamic_ntk_parameters,
    "yarn": _compute_yarn_parameters,
    "longrope": _compute_longrope_parameters,
    "llama3": _compute_llama3_parameters,
}


def _check_received_keys(rope_type: str, received_keys: set, required_keys: set, optional_keys: Optional[set] = None):
    """Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
    # BC: "rope_type" was originally "type" -- let's gracefully handle it
    if "rope_type" not in received_keys and "type" in received_keys:
        received_keys -= {"type"}
        received_keys.add("rope_type")

    missing_keys = required_keys - received_keys
    if missing_keys:
        raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")

    if optional_keys is not None:
        unused_keys = received_keys - required_keys - optional_keys
    else:
        unused_keys = received_keys - required_keys
    if unused_keys:
        logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")


def _validate_default_rope_parameters(config: PretrainedConfig):
    rope_scaling = config.rope_scaling
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
    required_keys = {"rope_type"}
    received_keys = set(rope_scaling.keys())
    _check_received_keys(rope_type, received_keys, required_keys)


def _validate_linear_scaling_rope_parameters(config: PretrainedConfig):
    rope_scaling = config.rope_scaling
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
    required_keys = {"rope_type", "factor"}
    received_keys = set(rope_scaling.keys())
    _check_received_keys(rope_type, received_keys, required_keys)

    factor = rope_scaling["factor"]
    if factor is None or not isinstance(factor, float) or factor < 1.0:
        logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")


def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig):
    rope_scaling = config.rope_scaling
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
    required_keys = {"rope_type", "factor"}
    # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
    optional_keys = {"original_max_position_embeddings"}
    received_keys = set(rope_scaling.keys())
    _check_received_keys(rope_type, received_keys, required_keys, optional_keys)

    factor = rope_scaling["factor"]
    if factor is None or not isinstance(factor, float) or factor < 1.0:
        logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")


def _validate_yarn_parameters(config: PretrainedConfig):
    rope_scaling = config.rope_scaling
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
    required_keys = {"rope_type", "factor"}
    optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
    received_keys = set(rope_scaling.keys())
    _check_received_keys(rope_type, received_keys, required_keys, optional_keys)

    factor = rope_scaling["factor"]
    if factor is None or not isinstance(factor, float) or factor < 1.0:
        logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")

    attention_factor = rope_scaling.get("attention_factor")
    if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
        logger.warning(
            f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
        )
    beta_fast = rope_scaling.get("beta_fast")
    if beta_fast is not None and not isinstance(beta_fast, float):
        logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
    beta_slow = rope_scaling.get("beta_slow")
    if beta_slow is not None and not isinstance(beta_slow, float):
        logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")

    if (beta_fast or 32) < (beta_slow or 1):
        logger.warning(
            f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
            f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
        )


def _validate_longrope_parameters(config: PretrainedConfig):
    rope_scaling = config.rope_scaling
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
    required_keys = {"rope_type", "short_factor", "long_factor"}
    # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
    optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"}
    received_keys = set(rope_scaling.keys())
    _check_received_keys(rope_type, received_keys, required_keys, optional_keys)

    partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
    dim = int(head_dim * partial_rotary_factor)

    short_factor = rope_scaling.get("short_factor")
    if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
        logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}")
    if not len(short_factor) == dim // 2:
        logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}")

    long_factor = rope_scaling.get("long_factor")
    if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor):
        logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}")
    if not len(long_factor) == dim // 2:
        logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}")

    # Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over
    # `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is
    # unique to longrope (= undesirable)
    if hasattr(config, "original_max_position_embeddings"):
        logger.warning_once(
            "This model has set a `original_max_position_embeddings` field, to be used together with "
            "`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`"
            "with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, "
            "as it is compatible with most model architectures."
        )
    else:
        factor = rope_scaling.get("factor")
        if factor is None:
            logger.warning("Missing required keys in `rope_scaling`: 'factor'")
        elif not isinstance(factor, float) or factor < 1.0:
            logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")

        attention_factor = rope_scaling.get("attention_factor")
        if attention_factor is not None and not isinstance(attention_factor, float) or attention_factor < 0:
            logger.warning(
                f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
            )


def _validate_llama3_parameters(config: PretrainedConfig):
    rope_scaling = config.rope_scaling
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
    required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"}
    received_keys = set(rope_scaling.keys())
    _check_received_keys(rope_type, received_keys, required_keys)

    factor = rope_scaling["factor"]
    if factor is None or not isinstance(factor, float) or factor < 1.0:
        logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")

    low_freq_factor = rope_scaling["low_freq_factor"]
    high_freq_factor = rope_scaling["high_freq_factor"]
    if low_freq_factor is None or not isinstance(low_freq_factor, float):
        logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}")
    if high_freq_factor is None or not isinstance(high_freq_factor, float):
        logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}")
    if high_freq_factor <= low_freq_factor:
        logger.warning(
            "`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor="
            f"{high_freq_factor} and low_freq_factor={low_freq_factor}"
        )

    original_max_position_embeddings = rope_scaling["original_max_position_embeddings"]
    if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
        logger.warning(
            "`rope_scaling`'s original_max_position_embeddings field must be an integer, got "
            f"{original_max_position_embeddings}"
        )
    if original_max_position_embeddings >= config.max_position_embeddings:
        logger.warning(
            "`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got "
            f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}"
        )


# Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
ROPE_VALIDATION_FUNCTIONS = {
    "default": _validate_default_rope_parameters,
    "linear": _validate_linear_scaling_rope_parameters,
    "dynamic": _validate_dynamic_scaling_rope_parameters,
    "yarn": _validate_yarn_parameters,
    "longrope": _validate_longrope_parameters,
    "llama3": _validate_llama3_parameters,
}


def rope_config_validation(config: PretrainedConfig):
    """
    Validate the RoPE config arguments, given a `PretrainedConfig` object
    """
    rope_scaling = getattr(config, "rope_scaling", None)  # not a default parameter in `PretrainedConfig`
    if rope_scaling is None:
        return

    # BC: "rope_type" was originally "type"
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
    validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
    if validation_fn is not None:
        validation_fn(config)
    else:
        logger.warning(
            f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
        )