Update README.md
Browse files
README.md
CHANGED
@@ -13,28 +13,28 @@ tags:
|
|
13 |
|
14 |
|
15 |
## Model Details
|
16 |
-
We introduce Llama3-ChatQA-1.5, which excels at conversational question answering (QA) and retrieval-augmented generation (RAG). Llama3-ChatQA-1.5 is developed using an improved training recipe from [ChatQA
|
17 |
|
18 |
## Other Resources
|
19 |
-
[Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B)   [Evaluation Data](https://huggingface.co/datasets/nvidia/ChatRAG-Bench)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder)   [Website](https://chatqa-project.github.io/)   [Paper](https://arxiv.org/
|
20 |
|
21 |
## Benchmark Results
|
22 |
Results in [ChatRAG Bench](https://huggingface.co/datasets/nvidia/ChatRAG-Bench) are as follows:
|
23 |
|
24 |
-
| | ChatQA-1.0-7B | Command-R-Plus | Llama-3-instruct-70b | GPT-4-0613 | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
|
25 |
-
| --
|
26 |
-
| Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 38.
|
27 |
-
| QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 41.82 | 39.73 | 38.82 |
|
28 |
-
| QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 48.05 | 49.03 | 51.40 |
|
29 |
-
| CoQA | 76.61 | 69.71 | 76.98 | 77.42 | 78.57 | 76.46 | 78.44 |
|
30 |
-
| DoQA | 41.57 | 40.67 | 41.24 | 43.39 | 51.94 | 49.
|
31 |
-
| ConvFinQA | 51.61 | 71.21 | 76.6 | 81.28 | 73.69 | 78.46 | 81.88 |
|
32 |
-
| SQA | 61.87 | 74.07 | 69.61 | 79.21 | 69.14 | 73.28 | 83.82 |
|
33 |
-
| TopioCQA | 45.45 | 53.77 | 49.72 | 45.09 | 50.98 | 49.96 | 55.63 |
|
34 |
-
| HybriDial* | 54.51 | 46.7 | 48.59 | 49.81 | 56.44 | 65.76 | 68.27 |
|
35 |
-
| INSCIT | 30.96 | 35.76 | 36.23 | 36.34 | 31.
|
36 |
-
| Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.14 | 55.17 | 58.25 |
|
37 |
-
| Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 53.89 | 53.99 | 57.14 |
|
38 |
|
39 |
Note that ChatQA-1.5 is built based on Llama-3 base model, and ChatQA-1.0 is built based on Llama-2 base model. ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial. The data and evaluation scripts for ChatRAG Bench can be found [here](https://huggingface.co/datasets/nvidia/ChatRAG-Bench).
|
40 |
|
@@ -184,7 +184,7 @@ Zihan Liu (zihanl@nvidia.com), Wei Ping (wping@nvidia.com)
|
|
184 |
## Citation
|
185 |
<pre>
|
186 |
@article{liu2024chatqa,
|
187 |
-
title={ChatQA:
|
188 |
author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
|
189 |
journal={arXiv preprint arXiv:2401.10225},
|
190 |
year={2024}}
|
|
|
13 |
|
14 |
|
15 |
## Model Details
|
16 |
+
We introduce Llama3-ChatQA-1.5, which excels at conversational question answering (QA) and retrieval-augmented generation (RAG). Llama3-ChatQA-1.5 is developed using an improved training recipe from [ChatQA paper](https://arxiv.org/pdf/2401.10225v3), and it is built on top of [Llama-3 base model](https://huggingface.co/meta-llama/Meta-Llama-3-8B). Specifically, we incorporate more conversational QA data to enhance its tabular and arithmetic calculation capability. Llama3-ChatQA-1.5 has two variants: Llama3-ChatQA-1.5-8B and Llama3-ChatQA-1.5-70B. Both models were originally trained using [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), we converted the checkpoints to Hugging Face format. **For more information about ChatQA, check the [website](https://chatqa-project.github.io/)!**
|
17 |
|
18 |
## Other Resources
|
19 |
+
[Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B)   [Evaluation Data](https://huggingface.co/datasets/nvidia/ChatRAG-Bench)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder)   [Website](https://chatqa-project.github.io/)   [Paper](https://arxiv.org/pdf/2401.10225v3)
|
20 |
|
21 |
## Benchmark Results
|
22 |
Results in [ChatRAG Bench](https://huggingface.co/datasets/nvidia/ChatRAG-Bench) are as follows:
|
23 |
|
24 |
+
| | ChatQA-1.0-7B | Command-R-Plus | Llama-3-instruct-70b | GPT-4-0613 | GPT-4-Turbo | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
|
25 |
+
| -- |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
|
26 |
+
| Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 35.35 | 38.90 | 39.33 | 41.26 |
|
27 |
+
| QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 40.10 | 41.82 | 39.73 | 38.82 |
|
28 |
+
| QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 51.46 | 48.05 | 49.03 | 51.40 |
|
29 |
+
| CoQA | 76.61 | 69.71 | 76.98 | 77.42 | 77.73 | 78.57 | 76.46 | 78.44 |
|
30 |
+
| DoQA | 41.57 | 40.67 | 41.24 | 43.39 | 41.60 | 51.94 | 49.60 | 50.67 |
|
31 |
+
| ConvFinQA | 51.61 | 71.21 | 76.6 | 81.28 | 84.16 | 73.69 | 78.46 | 81.88 |
|
32 |
+
| SQA | 61.87 | 74.07 | 69.61 | 79.21 | 79.98 | 69.14 | 73.28 | 83.82 |
|
33 |
+
| TopioCQA | 45.45 | 53.77 | 49.72 | 45.09 | 48.32 | 50.98 | 49.96 | 55.63 |
|
34 |
+
| HybriDial* | 54.51 | 46.7 | 48.59 | 49.81 | 47.86 | 56.44 | 65.76 | 68.27 |
|
35 |
+
| INSCIT | 30.96 | 35.76 | 36.23 | 36.34 | 33.75 | 31.90 | 30.10 | 32.31 |
|
36 |
+
| Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.03 | 54.14 | 55.17 | 58.25 |
|
37 |
+
| Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 54.72 | 53.89 | 53.99 | 57.14 |
|
38 |
|
39 |
Note that ChatQA-1.5 is built based on Llama-3 base model, and ChatQA-1.0 is built based on Llama-2 base model. ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial. The data and evaluation scripts for ChatRAG Bench can be found [here](https://huggingface.co/datasets/nvidia/ChatRAG-Bench).
|
40 |
|
|
|
184 |
## Citation
|
185 |
<pre>
|
186 |
@article{liu2024chatqa,
|
187 |
+
title={ChatQA: Surpassing GPT-4 on Conversational QA and RAG},
|
188 |
author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
|
189 |
journal={arXiv preprint arXiv:2401.10225},
|
190 |
year={2024}}
|