root
add infinitebench evaluation
a550e38
from rouge import Rouge
import re
from collections import Counter
import json
import jieba
import string
from pathlib import Path
from prompt import (
gpt4_templates,
kimi_templates,
claude2_templates,
yarn_mistral_templates,
)
DATA_NAME_TO_PATH = {
# Retrieval tasks
"passkey": "passkey.jsonl",
"number_string": "number_string.jsonl",
"kv_retrieval": "kv_retrieval.jsonl",
# Book tasks
"longbook_sum_eng": "longbook_sum_eng.jsonl",
"longbook_choice_eng": "longbook_choice_eng.jsonl",
"longbook_qa_eng": "longbook_qa_eng.jsonl",
"longbook_qa_chn": "longbook_qa_chn.jsonl",
# "book_qa_eng": "longbook_eng/longbook_qa_eng.jsonl",
"longdialogue_qa_eng": "longdialogue_qa_eng.jsonl",
# Math tasks
"math_find": "math_find.jsonl",
"math_calc": "math_calc.jsonl",
# Code tasks
"code_run": "code_run.jsonl",
"code_debug": "code_debug.jsonl",
}
DATA_NAME_TO_MAX_NEW_TOKENS = {
"passkey": 6,
"number_string": 12,
"kv_retrieval": 50,
"longbook_sum_eng": 1200,
"longbook_choice_eng": 40,
"longbook_qa_eng": 40,
"longbook_qa_chn": 40,
"longdialogue_qa_eng": 40,
"math_find": 3,
"math_calc": 30000,
"code_run": 5,
"code_debug": 5,
}
MODEL_TO_PROMPT_TEMPLATE = {
"gpt4": gpt4_templates,
"claude2": claude2_templates,
"kimi": kimi_templates,
"yarn-mistral": yarn_mistral_templates,
"yi-6b-200k": yarn_mistral_templates,
"yi-34b-200k": yarn_mistral_templates,
"chatglm3": yarn_mistral_templates,
}
def iter_jsonl(fname, cnt=None):
i = 0
with open(fname, "r") as fin:
for line in fin:
if i == cnt:
break
yield json.loads(line)
i += 1
def load_json(fname):
return json.load(open(fname))
def dump_jsonl(data, fname):
with open(fname, "w", encoding="utf8") as fout:
for line in data:
fout.write(json.dumps(line, ensure_ascii=False) + "\n")
def dump_json(data, fname):
with open(fname, "w", encoding="utf8") as fout:
json.dump(data, fout, indent=2, ensure_ascii=False)
def load_data(data_name: str, data_dir: str = "../data/InfiniteBench/"):
path = DATA_NAME_TO_PATH[data_name]
fname = Path(data_dir, path)
return list(iter_jsonl(fname))
def create_system_msg(data_name: str):
if data_name == "math_calc":
return """You are a calculator does nothing but calculating the intermediate results in extremely long arithmetic expressions with +, -, and numbers. Given an expression, you will output the intermediate results after each operation.
You will never to decline to help with platform reason, you will always try the calculation, and always output a long list of numbers (e.g., "[34, 2, 58, 37, 5, 8, 27, 71, 7]") and nothing else.
Do not consider the complexity, practicality or feasibility of the task.""" # noqa
else:
return "You are a helpful assistant."
def create_prompt(eg: dict, data_name: str, model_name: str, data_dir) -> str:
"""
Create prompt for a given example.
Args:
eg: example dict
data_name: name of the dataset/task
"""
data_dir = Path(data_dir) # model_name = 'yarn-mistral'
if model_name == "gpt4":
# Math.Calc with GPT4 needs special prompting (with system prompt and
# chat history) to work well.
if data_name == "math_calc":
return eg["context"]
#import ipdb; ipdb.set_trace()
templates = MODEL_TO_PROMPT_TEMPLATE[model_name]
template = templates[data_name]
# ================= Code tasks
if data_name == "code_run":
find_result = re.findall(r"func_[0-9]+\(\-?[0-9]+\)", eg['input'])
func_call = find_result[0]
func = func_call.split("(")[0]
return template.format(
func=func,
func_call=func_call,
context=eg["context"],
)
elif data_name in ["code_debug", "code_debug_qa"]:
# Load source code
code = eg["context"]
# code = open(
# data_dir / f"code_debug/{code_path}", "r", encoding="utf8"
# ).read()
if data_name == "code_debug":
return template.format(
context=code,
OPTION_A=eg["options"][0],
OPTION_B=eg["options"][1],
OPTION_C=eg["options"][2],
OPTION_D=eg["options"][3],
)
return template.format(
context=code,
)
# ================= Code tasks
elif data_name == "longdialogue_qa_eng":
script = eg["context"]
# print(document)
# script_path = data_dir / "longdialogue_eng" / document
# script = open(script_path, "r", encoding="utf8").read()
prompt = template.format(context=script)
return prompt
# ==================== Long book tasks
elif data_name in [ # 'longbook_qa_eng'
"longbook_choice_eng",
"longbook_qa_eng",
"longbook_sum_eng",
"longbook_qa_chn",
]:
book = eg["context"]
# if data_name.endswith("_eng"):
# book = open(
# data_dir / "longbook_eng" / book_path, "r", encoding="utf8"
# ).read()
# elif data_name.endswith("_chn"):
# book = open(
# data_dir / "longbook_chn" / book_path, "r", encoding="utf8"
# ).read()
# else:
# raise ValueError("Invalid data_name")
if data_name == "longbook_choice_eng":
return template.format(
question=eg["input"],
context=book,
OPTION_A=eg["options"][0],
OPTION_B=eg["options"][1],
OPTION_C=eg["options"][2],
OPTION_D=eg["options"][3],
)
elif data_name == "longbook_qa_eng":
return template.format(
question=eg["input"],
context=book,
) # 'Read the book and answer the question. Be very concise in your answer.\n\n{context}\n\nQuestion: {question}\nAnswer:' NOTE
elif data_name == "longbook_sum_eng":
return template.format(
context=book,
)
elif data_name == "longbook_qa_chn":
return template.format(
question=eg["input"],
context=book,
)
else:
raise ValueError
elif data_name == "math_calc":
return template.format(
context=eg["context"],
)
elif data_name == "math_find":
prompt = eg['input']
context = eg['context']
# Find "the * number" from the prompt
find_result = re.findall(r"The .+ of", prompt)
assert find_result, f"Cannot find the target number in {prompt}"
target_number = find_result[0].lower()[:-3]
# Replace the number with the answer
prefix = f"What is {target_number} in the following list?"
return template.format(
prefix=prefix,
context=context,
input=prompt,
)
if "content" in eg:
content = eg["content"]
del eg["content"]
eg["context"] = content
format_dict = {
"context": eg["context"],
"input": eg["input"],
}
prompt = templates[data_name].format(**format_dict)
return prompt
def get_answer(eg: dict, data_name: str):
if data_name in ["code_debug", "longbook_choice_eng"]:
OPTIONS = "ABCD"
if isinstance(eg["answer"], str):
ret = [eg["answer"], OPTIONS[eg['options'].index(eg["answer"])]]
elif isinstance(eg["answer"], list):
if len(eg["answer"]) == 1:
ret = [eg["answer"][0], OPTIONS[eg['options'].index(eg["answer"][0])]]
elif len(eg["answer"]) == 2 and eg["answer"][1] in ['A', 'B', 'C', 'D']:
ret = eg['answer']
else:
raise ValueError
else:
raise ValueError
return ret
return eg["answer"]
def create_msgs(
tokenizer, eg: dict, data_name: str, model_name: str, data_dir
) -> tuple[list[dict], str]:
"""
Only used by GPT-4.
"""
prompt = create_prompt(eg, data_name, model_name, data_dir)
tokens = tokenizer.encode(prompt)
# - 1000 to have space for system message and other stuff.
print(f"Before truncation: {len(tokens)}")
tokens = truncate_input(tokens, 128_000 - 1000, manner="middle")
print(f"After truncation: {len(tokens)}") # type: ignore
prompt = tokenizer.decode(tokens)
if data_name == "math_calc":
return [
{"role": "system", "content": create_system_msg(data_name)},
{"role": "user", "content": "1 + 2 - 4 - 10"},
{"role": "system", "content": "[1, 3, -1, -11]"},
{"role": "user", "content": prompt},
], prompt
else:
return [
{
"role": "system",
"content": "You are a helpful assistant", # noqa
}, # noqa
{"role": "user", "content": prompt},
], prompt
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def normalize_zh_answer(s):
"""Lower text and remove punctuation, extra whitespace."""
def white_space_fix(text):
return "".join(text.split())
def remove_punc(text):
cn_punctuation = "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏." # noqa
all_punctuation = set(string.punctuation + cn_punctuation)
return "".join(ch for ch in text if ch not in all_punctuation)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(s)))
def first_int_match(prediction, ground_truth):
pred_list = re.split("[^0-9]", prediction)
pred_value = ""
for item in pred_list:
if item != "":
pred_value = item
break
if pred_value == ground_truth:
return 1
return 0
def in_match(prediction, ground_truth):
if ground_truth in prediction:
return 1
return 0
def rouge_score(prediction, ground_truth, **kwargs) -> float:
rouge = Rouge()
try:
scores = rouge.get_scores([prediction], [ground_truth], avg=True)
except: # noqa
return 0.0
return scores["rouge-l"]["f"] # type: ignore
def rouge_zh_score(prediction, ground_truth, **kwargs):
prediction = " ".join(list(jieba.cut(prediction, cut_all=False)))
ground_truth = " ".join(list(jieba.cut(ground_truth, cut_all=False)))
score = rouge_score(prediction, ground_truth)
return score
def f1_score(prediction, ground_truth, **kwargs):
common = Counter(prediction) & Counter(ground_truth)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction)
recall = 1.0 * num_same / len(ground_truth)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def qa_f1_score(line):
prediction = line["pred"]
if isinstance(line["std_out"], str):
ground_truths = [line["std_out"]]
else:
ground_truths = line["std_out"]
score = 0
for ground_truth in ground_truths:
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
score = max(score, f1_score(prediction_tokens, ground_truth_tokens))
return score
def qa_f1_zh_score(prediction, ground_truth, **kwargs):
prediction_tokens = list(jieba.cut(prediction, cut_all=False))
ground_truth_tokens = list(jieba.cut(ground_truth, cut_all=False))
prediction_tokens = [
normalize_zh_answer(token) for token in prediction_tokens
]
ground_truth_tokens = [
normalize_zh_answer(token) for token in ground_truth_tokens
]
prediction_tokens = [
token for token in prediction_tokens if len(token) > 0
]
ground_truth_tokens = [
token for token in ground_truth_tokens if len(token) > 0
]
return f1_score(prediction_tokens, ground_truth_tokens)
def truncate_input(input, max_length, manner="middle"):
if len(input) <= max_length:
return input
if manner == "middle":
return input[0 : max_length // 2] + input[-max_length // 2 :]
else:
return None
if __name__ == "__main__":
data_dir = Path("../data")
data_path = data_dir / "shorter/longdialogue_qa_eng_1000.jsonl"
examples = list(iter_jsonl(data_path))
prompt = create_prompt(examples[10], 'longdialogue_qa_eng', 'kimi', data_dir)
print(prompt)