File size: 29,640 Bytes
b925209 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
import json
import os
import sys
import time
import yaml
import spacy
import ast
from PIL import Image
from glob import glob
from tqdm import tqdm
from collections import defaultdict
import pandas as pd
from io import BytesIO
import base64
from anls import anls_score
import torch
from torch.utils.data import Dataset, DataLoader, DistributedSampler
import torchvision.transforms as T
from eval import conversation as conversation_lib
from eval.mmmu_utils import CAT_SHORT2LONG, DOMAIN_CAT2SUB_CAT, parse_multi_choice_response, parse_open_response, \
process_single_sample, construct_prompt, mmmu_main_eval, process_single_sample_pro, construct_prompt_pro
from eval.mmmu_utils import evaluate as evaluate_mmmu
from torchvision.transforms.functional import InterpolationMode
from datasets import load_dataset, concatenate_datasets
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image, input_size=448, max_num=6, decoded=False):
if not decoded:
image = Image.open(image).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def levenshtein_distance(s1, s2):
if len(s1) > len(s2):
s1, s2 = s2, s1
distances = range(len(s1) + 1)
for i2, c2 in enumerate(s2):
distances_ = [i2 + 1]
for i1, c1 in enumerate(s1):
if c1 == c2:
distances_.append(distances[i1])
else:
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
distances = distances_
return distances[-1]
def get_anls_score(pred, gold_labels, threshold, llava_eval=False):
values = []
for answer in gold_labels:
# preprocess both the answers - gt and prediction
gt_answer = ' '.join(answer.strip().lower().split())
det_answer = ' '.join(pred.strip().lower().split())
dist = levenshtein_distance(gt_answer, det_answer)
length = max(len(answer.upper()), len(pred.upper()))
values.append(0.0 if length == 0 else float(dist) / float(length))
question_result = 1 - min(values)
if llava_eval:
question_result = 1.0 if question_result >= threshold else 0.0
else:
if (question_result < threshold):
question_result = 0
return question_result
def isNumber(n: str):
try:
float(n)
return True
except ValueError:
return False
class COCOEvalDataset(Dataset):
def __init__(self, args, img_dir, subset=None):
self.args = args
self.img_files = sorted(glob(os.path.join(img_dir, "*")))
if subset:
self.img_files = self.img_files[:subset]
self.image_ids = [int(img_file.split("_")[-1].split(".")[0]) for img_file in self.img_files]
def __len__(self):
return len(self.img_files)
def __getitem__(self, idx):
img_path = self.img_files[idx]
img = load_image(img_path, max_num=6).to(torch.bfloat16)
return self.image_ids[idx], img
class Flickr30KEvalDataset(Dataset):
def __init__(self, args, img_dir, subset=None):
self.args = args
self.img_dir = img_dir
self.test_samples = json.load(open(os.path.join(img_dir, "flickr30k_test.json"), encoding='utf-8'))
if subset:
self.test_samples = self.test_samples[:subset]
def __len__(self):
return len(self.test_samples)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.test_samples[idx]["image"])
img = load_image(img_path, max_num=6).to(torch.bfloat16)
image_id = int(self.test_samples[idx]["image"].split("/")[-1].replace(".jpg", ""))
return image_id, img
class VQAv2EvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, subset=None):
self.args = args
self.img_dir = img_dir
self.gt = json.load(open(gt_path, encoding='utf-8'))
if subset:
self.gt = self.gt[:subset]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.gt[idx]["image"])
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question_id = self.gt[idx]["question_id"]
question = self.gt[idx]["question"]
answer = self.gt[idx]["answer"]
return img, question_id, question, answer
class TextVQAEvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, subset=None):
self.args = args
self.img_dir = img_dir
self.gt = json.load(open(gt_path, encoding='utf-8'))['data']
if subset:
self.gt = self.gt[:subset]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.gt[idx]["image_id"] + '.jpg')
if not os.path.exists(img_path):
img_path = img_path.replace('.jpg', '.png')
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question_id = self.gt[idx]["question_id"]
question = self.gt[idx]["question"]
answer = self.gt[idx]["answers"]
return img, question_id, question, answer
class GQAEvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, subset=None):
self.args = args
self.img_dir = img_dir
self.gt = json.load(open(gt_path, encoding='utf-8'))
self.gt = [{
"question_id": int(k),
"image": v['imageId'] + ".jpg",
"question": v['question'],
"answer": v['answer']
} for k, v in self.gt.items()]
if subset:
self.gt = self.gt[:subset]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.gt[idx]["image"])
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question_id = self.gt[idx]["question_id"]
question = self.gt[idx]["question"]
answer = self.gt[idx]["answer"]
return img, question_id, question, [answer]
class ChartQAEvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, subset=None):
self.args = args
self.img_dir = img_dir
self.gt = json.load(open(gt_path, encoding='utf-8'))
for i in range(len(self.gt)):
self.gt[i]['question_id'] = i
if subset:
self.gt = self.gt[:subset]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.gt[idx]["imgname"])
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question_id = self.gt[idx]["question_id"]
question = self.gt[idx]["query"]
answer = self.gt[idx]["label"]
return img, question_id, question, [answer]
class OKVQAEvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, question_path, subset=None):
self.args = args
self.img_dir = img_dir
self.gt = json.load(open(gt_path, encoding='utf-8'))['annotations']
self.questions = json.load(open(question_path, 'r'))['questions']
if subset:
self.gt = self.gt[:subset]
qid2q = {q['question_id']: q['question'] for q in self.questions}
for ann in self.gt:
ann['answers'] = [ans['answer'] for ans in ann['answers']]
ann['question'] = qid2q[ann['question_id']]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_id = str(self.gt[idx]["image_id"])
img_id = '0' * (12 - len(img_id)) + img_id
img_file_name = f"COCO_val2014_{img_id}.jpg"
img_path = os.path.join(self.img_dir, img_file_name)
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question_id = self.gt[idx]["question_id"]
question = self.gt[idx]["question"]
answer = self.gt[idx]["answers"]
return img, question_id, question, answer
class DocVQAEvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, split='val', subset=None):
self.args = args
self.img_dir = img_dir
self.gt = json.load(open(gt_path, encoding='utf-8'))['data']
if subset:
self.gt = self.gt[:subset]
self.split = split
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.gt[idx]['image'].split('/')[-1])
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question_id = self.gt[idx]["questionId"]
question = self.gt[idx]["question"]
if self.split == 'val':
answer = self.gt[idx]["answers"]
else:
answer = ['']
return img, question_id, question, answer
class OCRBenchEvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, subset=None):
self.args = args
self.img_dir = img_dir
self.gt = json.load(open(gt_path, encoding='utf-8'))
if subset:
self.gt = self.gt[:subset]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.gt[idx]['image_path'])
img = load_image(img_path, max_num=6).to(torch.bfloat16)
dataset_name = self.gt[idx]["dataset_name"]
question_id = f"{idx}"
question = self.gt[idx]["question"]
answer = self.gt[idx]["answers"]
data_type = self.gt[idx]["type"]
return img, question_id, question, answer, dataset_name, data_type
class AI2DiagramEvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, subset=None):
self.args = args
self.img_dir = img_dir
with open(gt_path, 'r') as json_file:
json_list = list(json_file)
self.gt = [json.loads(json_str) for json_str in json_list]
if subset:
self.gt = self.gt[:subset]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.gt[idx]['image'])
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question_id = self.gt[idx]["question_id"]
question = self.gt[idx]["question"]
answer = self.gt[idx]["answer"]
return img, question_id, question, answer
class AI2DiagramNoMaskEvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, subset=None):
self.args = args
self.img_dir = img_dir
with open(gt_path, 'r') as json_file:
json_list = list(json_file)
self.gt = [json.loads(json_str) for json_str in json_list]
if subset:
self.gt = self.gt[:subset]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_file_name = self.gt[idx]['image'].replace("AI2D_TEST", "AI2D_TEST_NO_MASK_IMAGES")
img_path = os.path.join(self.img_dir, img_file_name)
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question_id = self.gt[idx]["question_id"]
question = self.gt[idx]["question"]
answer = self.gt[idx]["answer"]
return img, question_id, question, answer
class RealworldQAEvalDataset(Dataset):
def __init__(self, args, img_dir, gt_path, subset=None):
self.args = args
self.img_dir = img_dir
self.gt = json.load(open(gt_path, encoding='utf-8'))
if subset:
self.gt = self.gt[:subset]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.gt[idx]['image'])
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question_id = int(self.gt[idx]['image'].replace(".webp", ""))
question = self.gt[idx]["question"]
if self.gt[idx]['question_type'] == "multi-choice":
choices = self.gt[idx]["choices"]
start_chr = 'A'
choices_str = ''
index2ans = {}
all_choices = []
for choice in choices:
all_choices.append(start_chr)
index2ans[start_chr] = choice
choices_str += f"{start_chr}. {choice}\n"
start_chr = chr(ord(start_chr) + 1)
question = question + '\n' + choices_str
question = question + "Answer with the option's letter from the given choices directly."
answer = chr(ord('A') + self.gt[idx]['correct_choice_index'])
else:
question = question + "\nAnswer the question using a single word or phrase."
answer = self.gt[idx]['answer']
return img, question_id, question, [answer]
class MathVistaEvalDataset(Dataset):
def __init__(self, args, task_cfg, gt_path=None):
self.args = args
self.task_cfg = task_cfg
self.dataset = load_dataset("AI4Math/MathVista")['testmini']
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
img = self.dataset[idx]['decoded_image']
img = load_image(img.convert("RGB"), max_num=6, decoded=True).to(torch.bfloat16)
question_id = self.dataset[idx]["pid"]
question = self.dataset[idx]["question"]
question_type = self.dataset[idx]["question_type"] # free_form or multi_choice
query = self.dataset[idx]["query"]
choices = self.dataset[idx]["choices"]
answer = self.dataset[idx]["answer"]
if question_type == 'multi_choice':
start_chr = 'A'
choices_str = ''
index2ans = {}
all_choices = []
for choice in choices:
all_choices.append(start_chr)
index2ans[start_chr] = choice
choices_str += f"{start_chr}. {choice}\n"
start_chr = chr(ord(start_chr) + 1)
question = question + '\n' + choices_str
question = question + "Answer with the option's letter from the given choices directly."
answer = chr(ord('A') + choices.index(answer))
else:
question = query.replace("Hint: ", "")
index2ans = {}
all_choices = []
return img, question_id, question_type, question, answer, str(index2ans), str(all_choices)
def construct_prompt_for_fewshot(sample):
config = {
"task_instructions": "",
"multi_choice_example_format": "{}\n{}Answer with the option's letter from the given choices directly.",
"short_ans_example_format": "{}\nAnswer the question using a single word or phrase."
}
question = sample['question'].strip()
options = eval(sample['options'])
example = ""
if sample['question_type'] == 'multiple-choice':
start_chr = 'A'
prediction_range = []
index2ans = {}
for option in options:
prediction_range.append(start_chr)
example += f"({start_chr}) {option}\n"
index2ans[start_chr] = option
start_chr = chr(ord(start_chr) + 1)
empty_prompt_sample_structure = config['multi_choice_example_format']
empty_prompt = empty_prompt_sample_structure.format(question, example)
res_dict = {'type': 'multichoice'}
res_dict['index2ans'] = index2ans
res_dict['correct_choice'] = sample['answer']
res_dict['all_choices'] = prediction_range
res_dict['empty_prompt'] = empty_prompt
if config['task_instructions']:
res_dict['final_input_prompt'] = config['task_instructions'].strip() + '\n\n' + empty_prompt
else:
res_dict['final_input_prompt'] = empty_prompt
res_dict['gt_content'] = options[ord(sample['answer'].upper()) - ord('A')]
else:
empty_prompt_sample_structure = config['short_ans_example_format']
empty_prompt = empty_prompt_sample_structure.format(question)
res_dict = {'type': 'open'}
res_dict['empty_prompt'] = empty_prompt
if config['task_instructions']:
res_dict['final_input_prompt'] = config['task_instructions'].strip() + '\n\n' + empty_prompt
else:
res_dict['final_input_prompt'] = empty_prompt
res_dict['gt_content'] = sample['answer']
res_dict.update(sample)
return res_dict
def process_image_tag(q):
q = q.strip()
# heuristic way of removing <image 1>
if q == '<image 1>':
q = 'Answer the question in the image.'
elif ':<image 1>' in q:
q = q.replace(':<image 1>', ' in the image. ')
q = q.strip()
elif ': <image 1>' in q:
q = q.replace(': <image 1>', ' in the image. ')
q = q.strip()
elif '.<image 1>' in q or '. <image 1>' in q:
q_list = q.split('<image 1>')
q_list = [part.strip() for part in q_list if part.strip() != '']
q = ' '.join(q_list)
elif q.startswith('<image 1> '):
if q[10].isupper():
q = q.replace('<image 1>', '')
else:
q = q.replace('<image 1>', 'The image')
q = q.strip()
elif q.startswith('<image 1>'):
q = q.replace('<image 1>', '')
elif q.endswith('<image 1>?'):
q = q.replace('<image 1>', 'the image')
elif q.endswith('?<image 1>') or q.endswith('? <image 1>') or q.endswith('\n<image 1>'):
q = q.replace('<image 1>', '')
q = q.strip()
elif ' <image 1> ' in q:
q = q.replace('<image 1>', 'the image')
elif ' <image 1>' in q:
q = q.replace('<image 1>', 'the image')
elif '()<image 1>' in q:
q = q.replace('()<image 1>', '')
elif '(<image 1>)' in q:
q = q.replace('(<image 1>)', '')
elif '<image 1>.' in q:
q = q.replace("<image 1>.", ". ")
else:
q = q.replace("<image 1>", ". ")
q = q.strip()
# remove <image 2> to <image 8>
for i in range(2, 8):
q = q.replace(f"<image {i}>", "")
return q
class MMMUProEvalDataset(Dataset):
def __init__(self, args, task_cfg, subset=None):
self.args = args
self.task_cfg = task_cfg
sub_dataset_list = []
# load_dataset will throw error if split is 'dev'
# 'dev' is part of the 'validation' and we need to manually split them
MMMU_path = "MMMU/MMMU_Pro"
_split = "test"
self.dataset = load_dataset(MMMU_path, "standard", split=_split)
if subset:
self.dataset = self.dataset[:subset]
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
# ===== single-image =====
sample = self.dataset[idx]
sample = process_single_sample_pro(sample)
sample = construct_prompt_pro(sample, self.task_cfg)
img = load_image(sample['image'].convert("RGB"), max_num=6, decoded=True).to(torch.bfloat16)
# img = img.reshape(-1, 3, self.args.img_h, self.args.img_w)
question_id = sample['id']
question = sample['final_input_prompt']
answer = sample['answer']
question = process_image_tag(question)
question = self.task_cfg['default_image_token'] + '\n' + question
if sample['question_type'] == 'multiple-choice':
index2ans = sample['index2ans']
all_choices = sample['all_choices']
else:
index2ans = {}
all_choices = []
return img, question_id, sample['subfield'], sample['question_type'], question, answer, str(index2ans), str \
(all_choices)
class MMMUEvalDataset(Dataset):
def __init__(self, args, task_cfg, subset=None, start_idx=None):
self.args = args
self.task_cfg = task_cfg
sub_dataset_list = []
# load_dataset will throw error if split is 'dev'
# 'dev' is part of the 'validation' and we need to manually split them
MMMU_path = "MMMU/MMMU"
_split = "test" if task_cfg["split"] == "test" else "validation"
for subject in CAT_SHORT2LONG.values():
sub_dataset = load_dataset(
MMMU_path, subject,
split=_split,
)
sub_dataset_list.append(sub_dataset)
dataset = concatenate_datasets(sub_dataset_list)
if task_cfg["split"] != "test":
dataset = [s for s in dataset if s['id'].startswith(task_cfg["split"])]
# dataset = [s for s in dataset if s['image_2'] is not None][1:]
self.dataset = dataset
if subset:
self.dataset = [dataset[i] for i in range(start_idx, min(start_idx + subset, len(dataset)))]
print(f"Evaluating a subset of dataset: {len(self.dataset)} from {start_idx} to {start_idx + subset}")
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
# ===== single-image =====
sample = self.dataset[idx]
sample = process_single_sample(sample)
sample = construct_prompt(sample, self.task_cfg)
img = load_image(sample['image'].convert("RGB"), max_num=6, decoded=True).to(torch.bfloat16)
question_id = sample['id']
question = sample['final_input_prompt']
answer = sample['answer']
question = process_image_tag(question)
question = self.task_cfg['default_image_token'] + '\n' + question
if sample['question_type'] == 'multiple-choice':
index2ans = sample['index2ans']
all_choices = sample['all_choices']
else:
index2ans = {}
all_choices = []
return img, question_id, sample['subfield'], sample['question_type'], question, answer, str(index2ans), str \
(all_choices)
class VizWizEvalDataset(Dataset):
def __init__(self, args, img_dir, question_path, subset=None):
self.args = args
self.img_dir = img_dir
self.questions = json.load(open(question_path, encoding='utf-8'))
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.questions[idx]["image"])
img = load_image(img_path, max_num=6).to(torch.bfloat16)
question = self.questions[idx]["question"]
question_id = self.questions[idx]["image"]
return img, question_id, question
class MMBenchEvalDataset(Dataset):
def __init__(self, args, gt_path, subset=None):
self.args = args
df = pd.read_csv(gt_path, sep='\t')
self.dataset = []
for i, row in df.iterrows():
choices = []
for choice in ['A', 'B', 'C', 'D']:
if str(row[choice]) != 'nan':
choices.append(row[choice])
this_sample = {
'index': row['index'],
'question': row['question'],
'hint': row['hint'],
'category': row['category'],
'image': Image.open(BytesIO(base64.b64decode(row['image']))),
'choices': choices
}
# Only dev set gives the ground truth answer
if 'answer' in row.keys():
this_sample['answer'] = row['answer']
else:
this_sample['answer'] = ''
self.dataset.append(this_sample)
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
img = load_image(self.dataset[idx]["image"].convert("RGB"), max_num=6, decoded=True).to(torch.bfloat16)
question = self.dataset[idx]["question"]
hint = self.dataset[idx]["hint"]
question_id = self.dataset[idx]["index"]
choices = self.dataset[idx]["choices"]
answer = self.dataset[idx]["answer"]
start_chr = 'A'
choices_str = ''
index2ans = {}
all_choices = []
for choice in choices:
all_choices.append(start_chr)
index2ans[start_chr] = choice
choices_str += f"{start_chr}. {choice}\n"
start_chr = chr(ord(start_chr) + 1)
question = question + '\n' + choices_str
return img, question_id, question, answer, str(index2ans), str(all_choices), self.dataset[idx]["question"]
def get_task_dataloader(task_name, task_cfg, args):
if "subset" in task_cfg.keys():
subset = task_cfg["subset"]
else:
subset = None
if task_name == "coco_caption":
dataset = COCOEvalDataset(args, task_cfg["image_dir"], subset)
elif task_name == "flickr30k_caption":
dataset = Flickr30KEvalDataset(args, task_cfg["image_dir"], subset)
elif task_name == "vqav2":
dataset = VQAv2EvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], subset)
elif task_name == "textvqa":
dataset = TextVQAEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], subset)
elif task_name == "gqa":
dataset = GQAEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], subset)
elif task_name == "chartqa":
dataset = ChartQAEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], subset)
elif task_name == "okvqa":
dataset = OKVQAEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], task_cfg["question_path"], subset)
elif task_name == "vizwiz":
dataset = VizWizEvalDataset(args, task_cfg["image_dir"], task_cfg["question_path"], subset)
elif task_name == "docvqa":
dataset = DocVQAEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], split='val', subset=subset)
elif task_name == "docvqa_test":
dataset = DocVQAEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], split='test', subset=subset)
elif task_name == "realworldqa":
dataset = RealworldQAEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], subset)
elif task_name == "mmmu":
dataset = MMMUEvalDataset(args, task_cfg, subset=args.subset, start_idx=args.start_idx)
elif task_name == "mmmu_pro":
dataset = MMMUProEvalDataset(args, task_cfg)
elif task_name == "mathvista":
dataset = MathVistaEvalDataset(args, task_cfg)
elif task_name == "mmbench":
dataset = MMBenchEvalDataset(args, task_cfg["gt_path"])
elif task_name == 'ocrbench':
dataset = OCRBenchEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], subset)
elif task_name == 'ai2diagram':
dataset = AI2DiagramEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], subset)
elif task_name == 'ai2diagram_nomask':
dataset = AI2DiagramNoMaskEvalDataset(args, task_cfg["image_dir"], task_cfg["gt_path"], subset)
else:
raise NotImplementedError(f"Task {task_name} is not supported yet.")
dataloader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
pin_memory=True,
)
return dataloader
|