File size: 18,631 Bytes
fb7c603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from __future__ import annotations
from typing import TYPE_CHECKING, Dict, Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from torch.nn import functional as F
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
from fla.ops.delta_rule import chunk_delta_rule, fused_recurrent_delta_rule
from typing import Any, Dict, List, Optional, Tuple
import torch
import transformers
if TYPE_CHECKING:
from transformers.processing_utils import Unpack
from fla.models.utils import Cache
def elu_p1(x):
return (F.elu(x, 1., False) + 1.).to(x)
def sum_norm(x):
return (x / x.sum(-1, keepdim=True)).to(x)
class DeltaNet(nn.Module):
r"""
The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484). # noqa:
DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa
Args:
mode (str, Optional):
Which DeltaNet kernel to use.
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
Default: `chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 1.0.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 1.0.
num_heads (int, Optional):
The number of heads. Default: 4.
use_beta (bool, Optional):
Whether to use beta. Default: `True`.
use_gate (bool, Optional):
Whether to use output gate. Default: `False`.
use_short_conv (bool, Optional):
Whether to use short convolutions. Default: `True`.
conv_size (int, Optional):
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
conv_bias (bool, Optional):
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
allow_neg_eigval (bool, Optional):
Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2.
See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537)
layer_idx (int, Optional):
The index of the layer. Default: None.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
qk_activation (str, Optional):
The activation function for the query and key. Default: `silu`.
qk_norm (str, Optional):
The normalization method for the query and key. Default: `l2`.
"""
def __init__(
self,
mode: str = 'chunk',
d_model: int = None,
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 1.0,
num_heads: int = 4,
use_beta: bool = True,
use_gate: bool = False,
use_short_conv: bool = True,
conv_size: int = 4,
conv_bias: bool = False,
allow_neg_eigval: bool = False,
layer_idx: int = None,
qk_activation: str = 'silu',
qk_norm: str = 'l2',
norm_eps: float = 1e-5,
config = None,
**kwargs
) -> DeltaNet:
super().__init__()
self.mode = mode
self.qk_activation = qk_activation
self.qk_norm = qk_norm
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
assert self.qk_norm in ['l2', 'sum']
if d_model is not None:
hidden_size = d_model
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.use_gate = use_gate
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.allow_neg_eigval = allow_neg_eigval
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.head_k_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.layer_idx = layer_idx
self.silu = nn.SiLU()
if mode == 'fused_chunk':
raise NotImplementedError("fused_chunk_delta_rule is now deprecated. Please use `chunk_delta_rule` instead.")
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.use_beta = use_beta
if self.use_beta:
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
if use_short_conv:
self.conv_size = conv_size
self.q_conv1d = ShortConvolution(
hidden_size=self.key_dim,
kernel_size=conv_size,
activation='silu' if qk_activation == 'silu' else None
)
self.k_conv1d = ShortConvolution(
hidden_size=self.key_dim,
kernel_size=conv_size,
activation='silu' if qk_activation == 'silu' else None
)
self.v_conv1d = ShortConvolution(
hidden_size=self.value_dim,
kernel_size=conv_size,
activation='silu'
)
else:
raise UserWarning(
"ShortConvolution is crucial to the performance. "
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
)
if use_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
else:
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs: Unpack[Dict]
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if attention_mask is not None:
assert len(attention_mask.shape) == 2, (
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
"for padding purposes (0 indicating padding). "
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
)
# change to inference mode.
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
last_state = None
if past_key_values is not None and len(past_key_values) > self.layer_idx:
last_state = past_key_values[self.layer_idx]
if self.use_short_conv:
conv_state_q, conv_state_k, conv_state_v = None, None, None
if last_state is not None:
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
position_ids = kwargs.get('position_ids', None)
q = self.q_proj(hidden_states)
q, conv_state_q = self.q_conv1d(x=q,
mask=conv_mask,
cache=conv_state_q,
output_final_state=use_cache,
seq_idx=position_ids)
k = self.k_proj(hidden_states)
k, conv_state_k = self.k_conv1d(x=k,
mask=conv_mask,
cache=conv_state_k,
output_final_state=use_cache,
seq_idx=position_ids)
v = self.v_proj(hidden_states)
v, conv_state_v = self.v_conv1d(x=v,
mask=conv_mask,
cache=conv_state_v,
output_final_state=use_cache,
seq_idx=position_ids)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
if self.qk_activation == 'silu':
q, k = self.silu(q), self.silu(k)
v = self.silu(v)
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
if self.qk_activation != 'silu':
if self.qk_activation == 'relu':
q, k = q.relu(), k.relu()
elif self.qk_activation == 'elu':
q, k = elu_p1(q), elu_p1(k)
elif self.qk_activation == 'identity':
pass
else:
raise NotImplementedError
if self.qk_norm == 'sum':
q = sum_norm(q).to(q)
k = sum_norm(k).to(k)
if self.use_beta:
beta = self.b_proj(hidden_states)
beta = beta.sigmoid()
else:
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
if self.allow_neg_eigval:
beta = beta * 2.
# dealing with padding
if attention_mask is not None:
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
cu_seqlens = kwargs.get('cu_seqlens', None)
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_delta_rule(
q=q,
k=k,
v=v,
beta=beta,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
)
elif mode == 'chunk':
o, recurrent_state = chunk_delta_rule(
q=q,
k=k,
v=v,
beta=beta,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
past_key_values.update(
recurrent_state=recurrent_state,
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
layer_idx=self.layer_idx,
offset=q.shape[1]
)
if self.use_gate:
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
o = self.o_norm(o, g)
else:
o = self.o_norm(o)
o = rearrange(o, 'b t h d -> b t (h d)')
o = self.o_proj(o)
return o, None, past_key_values
class Cache(transformers.cache_utils.Cache):
"""
A cache used for storing hidden states produced by flash linear attention models.
It stores the states of each layer as the tensor of shape `[batch_size, key_dim, value_dim]`.
"""
is_compileable = True
def __init__(
self,
seen_tokens: int = 0
) -> Cache:
super().__init__(layers=[0])
self.states: List[Dict[str, Any]] = []
self._seen_tokens = seen_tokens # Used in `generate` to keep tally of how many tokens the cache has seen
def __getitem__(self, layer_idx: int) -> Dict[str, Any]:
if layer_idx < len(self):
return self.states[layer_idx]
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
for state in self.states:
yield state
def __len__(self):
return len(self.states)
def reset(self):
for state in self.states:
for key in state:
if state[key] is not None:
if type(state[key]) == tuple:
for subkey in state[key]:
subkey.zero_()
else:
state[key].zero_()
self._seen_tokens = 0
def update(
self,
recurrent_state: Optional[Tuple[torch.Tensor]] = None,
attn_state: Optional[Tuple[torch.Tensor]] = None,
conv_state: Optional[Tuple[torch.Tensor]] = None,
ffn_state: Optional[Tuple[torch.Tensor]] = None,
layer_idx: int = 0,
offset: Optional[int] = 1,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""
Args:
recurrent_state (`torch.Tensor`):
The new recurrent state to cache.
attn_state (`Tuple[torch.Tensor]`):
The new attention key/value states to cache.
conv_state (`Tuple[torch.Tensor]`):
The new convolution state to cache.
ffn_state (`Tuple[torch.Tensor]`):
The new feed-forward state to cache.
layer_idx (`int`, defaults to 0):
The index of the layer to cache the states for.
offset (`int`, defaults to 1):
The number of new tokens being processed.
cache_kwargs (`Dict[str, Any]`):
Additional arguments for the cache subclass.
Return:
Dictionary of the updated state.
"""
if cache_kwargs is None:
cache_kwargs = {}
if attn_state is not None:
input_size = attn_state[0].shape[1]
window_size = cache_kwargs.get('window_size', None)
if not (isinstance(attn_state, Tuple) or isinstance(attn_state, List)):
raise ValueError("`attn_state` must be a tuple of tensors for key/value states")
if len(self.states) <= layer_idx:
# update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += offset
if attn_state is not None:
if window_size is not None and input_size > window_size:
attn_state = [state[:, -window_size:].contiguous() for state in attn_state]
state = dict(
recurrent_state=recurrent_state,
attn_state=attn_state,
conv_state=conv_state,
ffn_state=ffn_state
)
self.states.append(state)
else:
# update the number of seen tokens
if layer_idx == len(self.states) - 1:
self._seen_tokens += offset
state = self.states[layer_idx]
if recurrent_state is not None:
state['recurrent_state'].copy_(recurrent_state)
if attn_state is not None:
if window_size is not None and state['attn_state'][0].shape[1] == window_size:
for i, (old_state, new_state) in enumerate(zip(state['attn_state'], attn_state)):
# DO NOT allocate new memory if the cache is full
# roll the key/value states to the left by `input_size`
old_state = old_state.roll(-input_size, 1)
# replace the last `input_size` tokens with the new key/value states
old_state[:, -input_size:] = new_state
state['attn_state'][i].copy_(old_state)
else:
attn_state = [
torch.cat([old_state, new_state], 1)
for old_state, new_state in zip(state['attn_state'], attn_state)
]
state['attn_state'].copy_(attn_state)
if conv_state is not None:
conv_state_q, conv_state_k, conv_state_v = state['conv_state']
conv_state_q.copy_(conv_state[0])
conv_state_k.copy_(conv_state[1])
conv_state_v.copy_(conv_state[2])
if ffn_state is not None:
state['ffn_state'].copy_(ffn_state)
return state
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
if len(self.states) <= layer_idx:
return 0
return self._seen_tokens
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. Cache does not have a maximum length."""
return None
def to_legacy_cache(self) -> Tuple:
return tuple(self.states)
@classmethod
@torch.compiler.disable
def from_legacy_cache(
cls,
past_key_values: Optional[Tuple] = None,
seen_tokens: int = 0
) -> Cache:
"""Converts a cache in the legacy cache format into an equivalent `Cache`."""
cache = cls(seen_tokens)
if isinstance(past_key_values, list):
for layer_idx in range(len(past_key_values)):
cache.states.append(past_key_values[layer_idx])
return cache |