File size: 18,631 Bytes
fb7c603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang

from __future__ import annotations

from typing import TYPE_CHECKING, Dict, Optional, Tuple

import torch
import torch.nn as nn
from einops import rearrange
from torch.nn import functional as F

from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
from fla.ops.delta_rule import chunk_delta_rule, fused_recurrent_delta_rule

from typing import Any, Dict, List, Optional, Tuple

import torch
import transformers

if TYPE_CHECKING:
    from transformers.processing_utils import Unpack

    from fla.models.utils import Cache


def elu_p1(x):
    return (F.elu(x, 1., False) + 1.).to(x)


def sum_norm(x):
    return (x / x.sum(-1, keepdim=True)).to(x)


class DeltaNet(nn.Module):
    r"""
    The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484).  # noqa:
    DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa

    Args:
        mode (str, Optional):
            Which DeltaNet kernel to use.
            Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
            Default: `chunk`.
        hidden_size (int, Optional):
            The hidden size of the input. Default: 1024.
        expand_k (float, Optional):
            The expansion ratio for the key dim. Default: 1.0.
        expand_v (float, Optional):
            The expansion ratio for the value dim. Default: 1.0.
        num_heads (int, Optional):
            The number of heads. Default: 4.
        use_beta (bool, Optional):
            Whether to use beta. Default: `True`.
        use_gate (bool, Optional):
            Whether to use output gate. Default: `False`.
        use_short_conv (bool, Optional):
            Whether to use short convolutions. Default: `True`.
        conv_size (int, Optional):
            The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
        conv_bias (bool, Optional):
            Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
        allow_neg_eigval (bool, Optional):
            Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2.
            See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537)
        layer_idx (int, Optional):
            The index of the layer. Default: None.
        norm_eps (float, Optional):
            The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
        qk_activation (str, Optional):
            The activation function for the query and key. Default: `silu`.
        qk_norm (str, Optional):
            The normalization method for the query and key. Default: `l2`.
    """

    def __init__(
        self,
        mode: str = 'chunk',
        d_model: int = None,
        hidden_size: int = 1024,
        expand_k: float = 1.0,
        expand_v: float = 1.0,
        num_heads: int = 4,
        use_beta: bool = True,
        use_gate: bool = False,
        use_short_conv: bool = True,
        conv_size: int = 4,
        conv_bias: bool = False,
        allow_neg_eigval: bool = False,
        layer_idx: int = None,
        qk_activation: str = 'silu',
        qk_norm: str = 'l2',
        norm_eps: float = 1e-5,
        config = None,
        **kwargs
    ) -> DeltaNet:
        super().__init__()

        self.mode = mode
        self.qk_activation = qk_activation
        self.qk_norm = qk_norm

        assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
        assert self.qk_norm in ['l2', 'sum']

        if d_model is not None:
            hidden_size = d_model
        self.hidden_size = hidden_size
        self.expand_k = expand_k
        self.expand_v = expand_v
        self.num_heads = num_heads
        self.use_gate = use_gate
        self.use_short_conv = use_short_conv
        self.conv_size = conv_size
        self.conv_bias = conv_bias
        self.allow_neg_eigval = allow_neg_eigval

        self.key_dim = int(hidden_size * expand_k)
        self.value_dim = int(hidden_size * expand_v)
        self.head_k_dim = self.key_dim // num_heads
        self.head_v_dim = self.value_dim // num_heads
        self.layer_idx = layer_idx

        self.silu = nn.SiLU()
        if mode == 'fused_chunk':
            raise NotImplementedError("fused_chunk_delta_rule is now deprecated. Please use `chunk_delta_rule` instead.")
        assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
        assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
        assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"

        self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
        self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
        self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)

        self.use_beta = use_beta
        if self.use_beta:
            self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
        if use_short_conv:
            self.conv_size = conv_size
            self.q_conv1d = ShortConvolution(
                hidden_size=self.key_dim,
                kernel_size=conv_size,
                activation='silu' if qk_activation == 'silu' else None
            )
            self.k_conv1d = ShortConvolution(
                hidden_size=self.key_dim,
                kernel_size=conv_size,
                activation='silu' if qk_activation == 'silu' else None
            )
            self.v_conv1d = ShortConvolution(
                hidden_size=self.value_dim,
                kernel_size=conv_size,
                activation='silu'
            )
        else:
            raise UserWarning(
                "ShortConvolution is crucial to the performance. "
                "Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
            )
        if use_gate:
            self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
            self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
        else:
            self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)

        self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)

        self.apply(self._initialize_weights)

    def _initialize_weights(self, module: nn.Module):
        if getattr(module, "_is_hf_initialized", False):
            return
        if isinstance(module, nn.Linear):
            nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        module._is_hf_initialized = True

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        **kwargs: Unpack[Dict]
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
        if attention_mask is not None:
            assert len(attention_mask.shape) == 2, (
                "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
                "for padding purposes (0 indicating padding). "
                "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
            )

        # change to inference mode.
        mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode

        last_state = None
        if past_key_values is not None and len(past_key_values) > self.layer_idx:
            last_state = past_key_values[self.layer_idx]
        
        if self.use_short_conv:
            conv_state_q, conv_state_k, conv_state_v = None, None, None
            if last_state is not None:
                conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
            conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
            position_ids = kwargs.get('position_ids', None)
            
            q = self.q_proj(hidden_states)

            q, conv_state_q = self.q_conv1d(x=q,
                                            mask=conv_mask,
                                            cache=conv_state_q,
                                            output_final_state=use_cache,
                                            seq_idx=position_ids)
            
            k = self.k_proj(hidden_states)

            k, conv_state_k = self.k_conv1d(x=k,
                                            mask=conv_mask,
                                            cache=conv_state_k,
                                            output_final_state=use_cache,
                                            seq_idx=position_ids)

            v = self.v_proj(hidden_states)

            v, conv_state_v = self.v_conv1d(x=v,
                                            mask=conv_mask,
                                            cache=conv_state_v,
                                            output_final_state=use_cache,
                                            seq_idx=position_ids)
        else:
            q = self.q_proj(hidden_states)
            k = self.k_proj(hidden_states)
            v = self.v_proj(hidden_states)

            if self.qk_activation == 'silu':
                q, k = self.silu(q), self.silu(k)
            
            v = self.silu(v)

        q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
        v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
        if self.qk_activation != 'silu':
            if self.qk_activation == 'relu':
                q, k = q.relu(), k.relu()
            elif self.qk_activation == 'elu':
                q, k = elu_p1(q), elu_p1(k)
            elif self.qk_activation == 'identity':
                pass
            else:
                raise NotImplementedError

        if self.qk_norm == 'sum':
            q = sum_norm(q).to(q)
            k = sum_norm(k).to(k)

        if self.use_beta:
            beta = self.b_proj(hidden_states)
            beta = beta.sigmoid()
        else:
            beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])

        if self.allow_neg_eigval:
            beta = beta * 2.

        # dealing with padding
        if attention_mask is not None:
            beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])

        recurrent_state = last_state['recurrent_state'] if last_state is not None else None

        cu_seqlens = kwargs.get('cu_seqlens', None)
        if mode == 'fused_recurrent':
            o, recurrent_state = fused_recurrent_delta_rule(
                q=q,
                k=k,
                v=v,
                beta=beta,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens,
                use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
            )
        elif mode == 'chunk':
            o, recurrent_state = chunk_delta_rule(
                q=q,
                k=k,
                v=v,
                beta=beta,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens,
                use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
            )
        else:
            raise NotImplementedError(f"Not supported mode `{mode}`.")

        if past_key_values is not None:
            past_key_values.update(
                recurrent_state=recurrent_state,
                conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
                layer_idx=self.layer_idx,
                offset=q.shape[1]
            )

        if self.use_gate:
            g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
            o = self.o_norm(o, g)
        else:
            o = self.o_norm(o)
        o = rearrange(o, 'b t h d -> b t (h d)')
        o = self.o_proj(o)

        return o, None, past_key_values


class Cache(transformers.cache_utils.Cache):
    """
    A cache used for storing hidden states produced by flash linear attention models.

    It stores the states of each layer as the tensor of shape `[batch_size, key_dim, value_dim]`.
    """

    is_compileable = True

    def __init__(
        self,
        seen_tokens: int = 0
    ) -> Cache:
        super().__init__(layers=[0])

        self.states: List[Dict[str, Any]] = []

        self._seen_tokens = seen_tokens  # Used in `generate` to keep tally of how many tokens the cache has seen

    def __getitem__(self, layer_idx: int) -> Dict[str, Any]:
        if layer_idx < len(self):
            return self.states[layer_idx]
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")

    def __iter__(self):
        for state in self.states:
            yield state

    def __len__(self):
        return len(self.states)

    def reset(self):
        for state in self.states:
            for key in state:
                if state[key] is not None:
                    if type(state[key]) == tuple:
                        for subkey in state[key]:
                            subkey.zero_()
                    else:
                        state[key].zero_()
        self._seen_tokens = 0


    def update(
        self,
        recurrent_state: Optional[Tuple[torch.Tensor]] = None,
        attn_state: Optional[Tuple[torch.Tensor]] = None,
        conv_state: Optional[Tuple[torch.Tensor]] = None,
        ffn_state: Optional[Tuple[torch.Tensor]] = None,
        layer_idx: int = 0,
        offset: Optional[int] = 1,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Dict[str, Any]:
        """
        Args:
            recurrent_state (`torch.Tensor`):
                The new recurrent state to cache.
            attn_state (`Tuple[torch.Tensor]`):
                The new attention key/value states to cache.
            conv_state (`Tuple[torch.Tensor]`):
                The new convolution state to cache.
            ffn_state (`Tuple[torch.Tensor]`):
                The new feed-forward state to cache.
            layer_idx (`int`, defaults to 0):
                The index of the layer to cache the states for.
            offset (`int`, defaults to 1):
                The number of new tokens being processed.
            cache_kwargs (`Dict[str, Any]`):
                Additional arguments for the cache subclass.

        Return:
            Dictionary of the updated state.
        """

        if cache_kwargs is None:
            cache_kwargs = {}
        if attn_state is not None:
            input_size = attn_state[0].shape[1]
            window_size = cache_kwargs.get('window_size', None)
            if not (isinstance(attn_state, Tuple) or isinstance(attn_state, List)):
                raise ValueError("`attn_state` must be a tuple of tensors for key/value states")
        if len(self.states) <= layer_idx:
            # update the number of seen tokens
            if layer_idx == 0:
                self._seen_tokens += offset
            if attn_state is not None:
                if window_size is not None and input_size > window_size:
                    attn_state = [state[:, -window_size:].contiguous() for state in attn_state]
            state = dict(
                recurrent_state=recurrent_state,
                attn_state=attn_state,
                conv_state=conv_state,
                ffn_state=ffn_state
            )
            self.states.append(state)
        else:
            # update the number of seen tokens
            if layer_idx == len(self.states) - 1:
                self._seen_tokens += offset
            state = self.states[layer_idx]
            if recurrent_state is not None:
                state['recurrent_state'].copy_(recurrent_state)
            if attn_state is not None:
                if window_size is not None and state['attn_state'][0].shape[1] == window_size:
                    for i, (old_state, new_state) in enumerate(zip(state['attn_state'], attn_state)):
                        # DO NOT allocate new memory if the cache is full
                        # roll the key/value states to the left by `input_size`
                        old_state = old_state.roll(-input_size, 1)
                        # replace the last `input_size` tokens with the new key/value states
                        old_state[:, -input_size:] = new_state
                        state['attn_state'][i].copy_(old_state)
                else:
                    attn_state = [
                        torch.cat([old_state, new_state], 1)
                        for old_state, new_state in zip(state['attn_state'], attn_state)
                    ]
                    state['attn_state'].copy_(attn_state)
            if conv_state is not None:
                conv_state_q, conv_state_k, conv_state_v = state['conv_state']
                conv_state_q.copy_(conv_state[0])
                conv_state_k.copy_(conv_state[1])
                conv_state_v.copy_(conv_state[2])
            if ffn_state is not None:
                state['ffn_state'].copy_(ffn_state)

        return state

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        if len(self.states) <= layer_idx:
            return 0
        return self._seen_tokens

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states. Cache does not have a maximum length."""
        return None

    def to_legacy_cache(self) -> Tuple:
        return tuple(self.states)

    @classmethod
    @torch.compiler.disable
    def from_legacy_cache(
        cls,
        past_key_values: Optional[Tuple] = None,
        seen_tokens: int = 0
    ) -> Cache:
        """Converts a cache in the legacy cache format into an equivalent `Cache`."""

        cache = cls(seen_tokens)
        if isinstance(past_key_values, list):
            for layer_idx in range(len(past_key_values)):
                cache.states.append(past_key_values[layer_idx])
        return cache