|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
from typing import TYPE_CHECKING, Dict, Optional, Tuple |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from einops import rearrange |
|
|
from torch.nn import functional as F |
|
|
|
|
|
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution |
|
|
from fla.ops.delta_rule import chunk_delta_rule, fused_recurrent_delta_rule |
|
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
|
|
import torch |
|
|
import transformers |
|
|
|
|
|
if TYPE_CHECKING: |
|
|
from transformers.processing_utils import Unpack |
|
|
|
|
|
from fla.models.utils import Cache |
|
|
|
|
|
|
|
|
def elu_p1(x): |
|
|
return (F.elu(x, 1., False) + 1.).to(x) |
|
|
|
|
|
|
|
|
def sum_norm(x): |
|
|
return (x / x.sum(-1, keepdim=True)).to(x) |
|
|
|
|
|
|
|
|
class DeltaNet(nn.Module): |
|
|
r""" |
|
|
The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484). # noqa: |
|
|
DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa |
|
|
|
|
|
Args: |
|
|
mode (str, Optional): |
|
|
Which DeltaNet kernel to use. |
|
|
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`. |
|
|
Default: `chunk`. |
|
|
hidden_size (int, Optional): |
|
|
The hidden size of the input. Default: 1024. |
|
|
expand_k (float, Optional): |
|
|
The expansion ratio for the key dim. Default: 1.0. |
|
|
expand_v (float, Optional): |
|
|
The expansion ratio for the value dim. Default: 1.0. |
|
|
num_heads (int, Optional): |
|
|
The number of heads. Default: 4. |
|
|
use_beta (bool, Optional): |
|
|
Whether to use beta. Default: `True`. |
|
|
use_gate (bool, Optional): |
|
|
Whether to use output gate. Default: `False`. |
|
|
use_short_conv (bool, Optional): |
|
|
Whether to use short convolutions. Default: `True`. |
|
|
conv_size (int, Optional): |
|
|
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4. |
|
|
conv_bias (bool, Optional): |
|
|
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`. |
|
|
allow_neg_eigval (bool, Optional): |
|
|
Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2. |
|
|
See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537) |
|
|
layer_idx (int, Optional): |
|
|
The index of the layer. Default: None. |
|
|
norm_eps (float, Optional): |
|
|
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5. |
|
|
qk_activation (str, Optional): |
|
|
The activation function for the query and key. Default: `silu`. |
|
|
qk_norm (str, Optional): |
|
|
The normalization method for the query and key. Default: `l2`. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
mode: str = 'chunk', |
|
|
d_model: int = None, |
|
|
hidden_size: int = 1024, |
|
|
expand_k: float = 1.0, |
|
|
expand_v: float = 1.0, |
|
|
num_heads: int = 4, |
|
|
use_beta: bool = True, |
|
|
use_gate: bool = False, |
|
|
use_short_conv: bool = True, |
|
|
conv_size: int = 4, |
|
|
conv_bias: bool = False, |
|
|
allow_neg_eigval: bool = False, |
|
|
layer_idx: int = None, |
|
|
qk_activation: str = 'silu', |
|
|
qk_norm: str = 'l2', |
|
|
norm_eps: float = 1e-5, |
|
|
config = None, |
|
|
**kwargs |
|
|
) -> DeltaNet: |
|
|
super().__init__() |
|
|
|
|
|
self.mode = mode |
|
|
self.qk_activation = qk_activation |
|
|
self.qk_norm = qk_norm |
|
|
|
|
|
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity'] |
|
|
assert self.qk_norm in ['l2', 'sum'] |
|
|
|
|
|
if d_model is not None: |
|
|
hidden_size = d_model |
|
|
self.hidden_size = hidden_size |
|
|
self.expand_k = expand_k |
|
|
self.expand_v = expand_v |
|
|
self.num_heads = num_heads |
|
|
self.use_gate = use_gate |
|
|
self.use_short_conv = use_short_conv |
|
|
self.conv_size = conv_size |
|
|
self.conv_bias = conv_bias |
|
|
self.allow_neg_eigval = allow_neg_eigval |
|
|
|
|
|
self.key_dim = int(hidden_size * expand_k) |
|
|
self.value_dim = int(hidden_size * expand_v) |
|
|
self.head_k_dim = self.key_dim // num_heads |
|
|
self.head_v_dim = self.value_dim // num_heads |
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
self.silu = nn.SiLU() |
|
|
if mode == 'fused_chunk': |
|
|
raise NotImplementedError("fused_chunk_delta_rule is now deprecated. Please use `chunk_delta_rule` instead.") |
|
|
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`." |
|
|
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}" |
|
|
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}" |
|
|
|
|
|
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False) |
|
|
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False) |
|
|
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False) |
|
|
|
|
|
self.use_beta = use_beta |
|
|
if self.use_beta: |
|
|
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False) |
|
|
if use_short_conv: |
|
|
self.conv_size = conv_size |
|
|
self.q_conv1d = ShortConvolution( |
|
|
hidden_size=self.key_dim, |
|
|
kernel_size=conv_size, |
|
|
activation='silu' if qk_activation == 'silu' else None |
|
|
) |
|
|
self.k_conv1d = ShortConvolution( |
|
|
hidden_size=self.key_dim, |
|
|
kernel_size=conv_size, |
|
|
activation='silu' if qk_activation == 'silu' else None |
|
|
) |
|
|
self.v_conv1d = ShortConvolution( |
|
|
hidden_size=self.value_dim, |
|
|
kernel_size=conv_size, |
|
|
activation='silu' |
|
|
) |
|
|
else: |
|
|
raise UserWarning( |
|
|
"ShortConvolution is crucial to the performance. " |
|
|
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing." |
|
|
) |
|
|
if use_gate: |
|
|
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False) |
|
|
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps) |
|
|
else: |
|
|
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps) |
|
|
|
|
|
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) |
|
|
|
|
|
self.apply(self._initialize_weights) |
|
|
|
|
|
def _initialize_weights(self, module: nn.Module): |
|
|
if getattr(module, "_is_hf_initialized", False): |
|
|
return |
|
|
if isinstance(module, nn.Linear): |
|
|
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) |
|
|
if module.bias is not None: |
|
|
nn.init.zeros_(module.bias) |
|
|
module._is_hf_initialized = True |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
use_cache: Optional[bool] = False, |
|
|
output_attentions: Optional[bool] = False, |
|
|
**kwargs: Unpack[Dict] |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
|
if attention_mask is not None: |
|
|
assert len(attention_mask.shape) == 2, ( |
|
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " |
|
|
"for padding purposes (0 indicating padding). " |
|
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." |
|
|
) |
|
|
|
|
|
|
|
|
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode |
|
|
|
|
|
last_state = None |
|
|
if past_key_values is not None and len(past_key_values) > self.layer_idx: |
|
|
last_state = past_key_values[self.layer_idx] |
|
|
|
|
|
if self.use_short_conv: |
|
|
conv_state_q, conv_state_k, conv_state_v = None, None, None |
|
|
if last_state is not None: |
|
|
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state'] |
|
|
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None |
|
|
position_ids = kwargs.get('position_ids', None) |
|
|
|
|
|
q = self.q_proj(hidden_states) |
|
|
|
|
|
q, conv_state_q = self.q_conv1d(x=q, |
|
|
mask=conv_mask, |
|
|
cache=conv_state_q, |
|
|
output_final_state=use_cache, |
|
|
seq_idx=position_ids) |
|
|
|
|
|
k = self.k_proj(hidden_states) |
|
|
|
|
|
k, conv_state_k = self.k_conv1d(x=k, |
|
|
mask=conv_mask, |
|
|
cache=conv_state_k, |
|
|
output_final_state=use_cache, |
|
|
seq_idx=position_ids) |
|
|
|
|
|
v = self.v_proj(hidden_states) |
|
|
|
|
|
v, conv_state_v = self.v_conv1d(x=v, |
|
|
mask=conv_mask, |
|
|
cache=conv_state_v, |
|
|
output_final_state=use_cache, |
|
|
seq_idx=position_ids) |
|
|
else: |
|
|
q = self.q_proj(hidden_states) |
|
|
k = self.k_proj(hidden_states) |
|
|
v = self.v_proj(hidden_states) |
|
|
|
|
|
if self.qk_activation == 'silu': |
|
|
q, k = self.silu(q), self.silu(k) |
|
|
|
|
|
v = self.silu(v) |
|
|
|
|
|
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k)) |
|
|
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim) |
|
|
if self.qk_activation != 'silu': |
|
|
if self.qk_activation == 'relu': |
|
|
q, k = q.relu(), k.relu() |
|
|
elif self.qk_activation == 'elu': |
|
|
q, k = elu_p1(q), elu_p1(k) |
|
|
elif self.qk_activation == 'identity': |
|
|
pass |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
if self.qk_norm == 'sum': |
|
|
q = sum_norm(q).to(q) |
|
|
k = sum_norm(k).to(k) |
|
|
|
|
|
if self.use_beta: |
|
|
beta = self.b_proj(hidden_states) |
|
|
beta = beta.sigmoid() |
|
|
else: |
|
|
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2]) |
|
|
|
|
|
if self.allow_neg_eigval: |
|
|
beta = beta * 2. |
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None]) |
|
|
|
|
|
recurrent_state = last_state['recurrent_state'] if last_state is not None else None |
|
|
|
|
|
cu_seqlens = kwargs.get('cu_seqlens', None) |
|
|
if mode == 'fused_recurrent': |
|
|
o, recurrent_state = fused_recurrent_delta_rule( |
|
|
q=q, |
|
|
k=k, |
|
|
v=v, |
|
|
beta=beta, |
|
|
initial_state=recurrent_state, |
|
|
output_final_state=use_cache, |
|
|
cu_seqlens=cu_seqlens, |
|
|
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False |
|
|
) |
|
|
elif mode == 'chunk': |
|
|
o, recurrent_state = chunk_delta_rule( |
|
|
q=q, |
|
|
k=k, |
|
|
v=v, |
|
|
beta=beta, |
|
|
initial_state=recurrent_state, |
|
|
output_final_state=use_cache, |
|
|
cu_seqlens=cu_seqlens, |
|
|
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False |
|
|
) |
|
|
else: |
|
|
raise NotImplementedError(f"Not supported mode `{mode}`.") |
|
|
|
|
|
if past_key_values is not None: |
|
|
past_key_values.update( |
|
|
recurrent_state=recurrent_state, |
|
|
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None, |
|
|
layer_idx=self.layer_idx, |
|
|
offset=q.shape[1] |
|
|
) |
|
|
|
|
|
if self.use_gate: |
|
|
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim) |
|
|
o = self.o_norm(o, g) |
|
|
else: |
|
|
o = self.o_norm(o) |
|
|
o = rearrange(o, 'b t h d -> b t (h d)') |
|
|
o = self.o_proj(o) |
|
|
|
|
|
return o, None, past_key_values |
|
|
|
|
|
|
|
|
class Cache(transformers.cache_utils.Cache): |
|
|
""" |
|
|
A cache used for storing hidden states produced by flash linear attention models. |
|
|
|
|
|
It stores the states of each layer as the tensor of shape `[batch_size, key_dim, value_dim]`. |
|
|
""" |
|
|
|
|
|
is_compileable = True |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
seen_tokens: int = 0 |
|
|
) -> Cache: |
|
|
super().__init__(layers=[0]) |
|
|
|
|
|
self.states: List[Dict[str, Any]] = [] |
|
|
|
|
|
self._seen_tokens = seen_tokens |
|
|
|
|
|
def __getitem__(self, layer_idx: int) -> Dict[str, Any]: |
|
|
if layer_idx < len(self): |
|
|
return self.states[layer_idx] |
|
|
else: |
|
|
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") |
|
|
|
|
|
def __iter__(self): |
|
|
for state in self.states: |
|
|
yield state |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.states) |
|
|
|
|
|
def reset(self): |
|
|
for state in self.states: |
|
|
for key in state: |
|
|
if state[key] is not None: |
|
|
if type(state[key]) == tuple: |
|
|
for subkey in state[key]: |
|
|
subkey.zero_() |
|
|
else: |
|
|
state[key].zero_() |
|
|
self._seen_tokens = 0 |
|
|
|
|
|
|
|
|
def update( |
|
|
self, |
|
|
recurrent_state: Optional[Tuple[torch.Tensor]] = None, |
|
|
attn_state: Optional[Tuple[torch.Tensor]] = None, |
|
|
conv_state: Optional[Tuple[torch.Tensor]] = None, |
|
|
ffn_state: Optional[Tuple[torch.Tensor]] = None, |
|
|
layer_idx: int = 0, |
|
|
offset: Optional[int] = 1, |
|
|
cache_kwargs: Optional[Dict[str, Any]] = None, |
|
|
) -> Dict[str, Any]: |
|
|
""" |
|
|
Args: |
|
|
recurrent_state (`torch.Tensor`): |
|
|
The new recurrent state to cache. |
|
|
attn_state (`Tuple[torch.Tensor]`): |
|
|
The new attention key/value states to cache. |
|
|
conv_state (`Tuple[torch.Tensor]`): |
|
|
The new convolution state to cache. |
|
|
ffn_state (`Tuple[torch.Tensor]`): |
|
|
The new feed-forward state to cache. |
|
|
layer_idx (`int`, defaults to 0): |
|
|
The index of the layer to cache the states for. |
|
|
offset (`int`, defaults to 1): |
|
|
The number of new tokens being processed. |
|
|
cache_kwargs (`Dict[str, Any]`): |
|
|
Additional arguments for the cache subclass. |
|
|
|
|
|
Return: |
|
|
Dictionary of the updated state. |
|
|
""" |
|
|
|
|
|
if cache_kwargs is None: |
|
|
cache_kwargs = {} |
|
|
if attn_state is not None: |
|
|
input_size = attn_state[0].shape[1] |
|
|
window_size = cache_kwargs.get('window_size', None) |
|
|
if not (isinstance(attn_state, Tuple) or isinstance(attn_state, List)): |
|
|
raise ValueError("`attn_state` must be a tuple of tensors for key/value states") |
|
|
if len(self.states) <= layer_idx: |
|
|
|
|
|
if layer_idx == 0: |
|
|
self._seen_tokens += offset |
|
|
if attn_state is not None: |
|
|
if window_size is not None and input_size > window_size: |
|
|
attn_state = [state[:, -window_size:].contiguous() for state in attn_state] |
|
|
state = dict( |
|
|
recurrent_state=recurrent_state, |
|
|
attn_state=attn_state, |
|
|
conv_state=conv_state, |
|
|
ffn_state=ffn_state |
|
|
) |
|
|
self.states.append(state) |
|
|
else: |
|
|
|
|
|
if layer_idx == len(self.states) - 1: |
|
|
self._seen_tokens += offset |
|
|
state = self.states[layer_idx] |
|
|
if recurrent_state is not None: |
|
|
state['recurrent_state'].copy_(recurrent_state) |
|
|
if attn_state is not None: |
|
|
if window_size is not None and state['attn_state'][0].shape[1] == window_size: |
|
|
for i, (old_state, new_state) in enumerate(zip(state['attn_state'], attn_state)): |
|
|
|
|
|
|
|
|
old_state = old_state.roll(-input_size, 1) |
|
|
|
|
|
old_state[:, -input_size:] = new_state |
|
|
state['attn_state'][i].copy_(old_state) |
|
|
else: |
|
|
attn_state = [ |
|
|
torch.cat([old_state, new_state], 1) |
|
|
for old_state, new_state in zip(state['attn_state'], attn_state) |
|
|
] |
|
|
state['attn_state'].copy_(attn_state) |
|
|
if conv_state is not None: |
|
|
conv_state_q, conv_state_k, conv_state_v = state['conv_state'] |
|
|
conv_state_q.copy_(conv_state[0]) |
|
|
conv_state_k.copy_(conv_state[1]) |
|
|
conv_state_v.copy_(conv_state[2]) |
|
|
if ffn_state is not None: |
|
|
state['ffn_state'].copy_(ffn_state) |
|
|
|
|
|
return state |
|
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed.""" |
|
|
if len(self.states) <= layer_idx: |
|
|
return 0 |
|
|
return self._seen_tokens |
|
|
|
|
|
def get_max_length(self) -> Optional[int]: |
|
|
"""Returns the maximum sequence length of the cached states. Cache does not have a maximum length.""" |
|
|
return None |
|
|
|
|
|
def to_legacy_cache(self) -> Tuple: |
|
|
return tuple(self.states) |
|
|
|
|
|
@classmethod |
|
|
@torch.compiler.disable |
|
|
def from_legacy_cache( |
|
|
cls, |
|
|
past_key_values: Optional[Tuple] = None, |
|
|
seen_tokens: int = 0 |
|
|
) -> Cache: |
|
|
"""Converts a cache in the legacy cache format into an equivalent `Cache`.""" |
|
|
|
|
|
cache = cls(seen_tokens) |
|
|
if isinstance(past_key_values, list): |
|
|
for layer_idx in range(len(past_key_values)): |
|
|
cache.states.append(past_key_values[layer_idx]) |
|
|
return cache |