|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Nemotron-Flash model.""" |
|
|
import inspect |
|
|
import math |
|
|
import copy |
|
|
import warnings |
|
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
import time |
|
|
import numpy as np |
|
|
import os |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import torch.utils.checkpoint |
|
|
from torch import nn |
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
|
|
torch._inductor.config.max_autotune_gemm_backends = ["aten"] |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.modeling_outputs import ( |
|
|
MoeCausalLMOutputWithPast, |
|
|
MoeModelOutputWithPast, |
|
|
) |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.generation import GenerationMixin |
|
|
|
|
|
try: |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
except ImportError: |
|
|
pass |
|
|
|
|
|
from transformers.utils import ( |
|
|
is_flash_attn_greater_or_equal_2_10, |
|
|
logging, |
|
|
replace_return_docstrings, |
|
|
) |
|
|
from .configuration_nemotron_flash import NemotronFlashConfig |
|
|
|
|
|
import math |
|
|
|
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
|
|
from einops import rearrange, repeat, reduce, pack, unpack |
|
|
|
|
|
from .fused_mha_with_cache import fused_mha_interface |
|
|
|
|
|
from .mamba2 import Mamba2 |
|
|
from mamba_ssm.utils.generation import InferenceParams |
|
|
from .delta_net import Cache as fla_cache |
|
|
from .delta_net import DeltaNet |
|
|
import torch._dynamo |
|
|
torch._dynamo.config.suppress_errors = True |
|
|
|
|
|
from torch.cuda import CUDAGraph |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "NemotronFlashConfig" |
|
|
|
|
|
|
|
|
class NemotronFlashRMSNorm(nn.Module): |
|
|
|
|
|
def __init__(self, hidden_size, learnable_weight=True, eps=1e-6): |
|
|
super().__init__() |
|
|
if learnable_weight: |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
else: |
|
|
self.weight = None |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight is not None: |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
else: |
|
|
return hidden_states.to(input_dtype) |
|
|
|
|
|
class LlamaRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config, dim, base=10000, device=None, scaling_factor=1.0): |
|
|
super().__init__() |
|
|
self.scaling_factor = scaling_factor |
|
|
self.dim = dim |
|
|
self.base = base |
|
|
self.config = config |
|
|
|
|
|
self.rope_type = config.rope_type |
|
|
|
|
|
self.factor = 2 |
|
|
|
|
|
max_position_embeddings = self.config.max_position_embeddings |
|
|
|
|
|
if config.rope_type is None or config.rope_type == "default": |
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
|
self.max_seq_len_cached = max_position_embeddings |
|
|
|
|
|
elif config.rope_type == 'ntk': |
|
|
assert self.config.orig_max_position_embeddings is not None |
|
|
orig_max_position_embeddings = self.config.orig_max_position_embeddings |
|
|
|
|
|
base = base * ((self.factor * max_position_embeddings / orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2)) |
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
|
|
|
|
self.max_seq_len_cached = orig_max_position_embeddings |
|
|
|
|
|
elif config.rope_type == 'dynamic_ntk': |
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
|
self.original_inv_freq = inv_freq |
|
|
self.max_seq_len_cached = self.config.orig_max_position_embeddings |
|
|
|
|
|
else: |
|
|
raise ValueError(f"Not support rope_type: {config.rope_type}") |
|
|
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
|
""" |
|
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
|
1 - growing beyond the cached sequence length (allow scaling) |
|
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
|
""" |
|
|
|
|
|
seq_len = torch.max(position_ids) + 1 |
|
|
if seq_len > self.max_seq_len_cached: |
|
|
base = self.base * ((self.factor * seq_len / self.config.orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2)) |
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
|
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.max_seq_len_cached = seq_len |
|
|
|
|
|
if seq_len < self.config.orig_max_position_embeddings and self.max_seq_len_cached > self.config.orig_max_position_embeddings: |
|
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
|
self.max_seq_len_cached = self.config.orig_max_position_embeddings |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x, position_ids): |
|
|
if self.rope_type == 'dynamic_ntk': |
|
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() |
|
|
sin = emb.sin() |
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors.""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
if q is not None: |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
|
|
|
else: |
|
|
q_embed = None |
|
|
|
|
|
if k is not None: |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
else: |
|
|
k_embed = None |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
|
|
|
class AttentionDynamicCache(DynamicCache): |
|
|
|
|
|
def __init__(self, config, batch_size, dtype=torch.float16, device=None, layer_type=None): |
|
|
self.dtype = dtype |
|
|
|
|
|
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] |
|
|
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] |
|
|
|
|
|
def update( |
|
|
self, |
|
|
key_states: torch.Tensor, |
|
|
value_states: torch.Tensor, |
|
|
layer_idx: int, |
|
|
cache_kwargs: Optional[Dict[str, Any]] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
|
|
if self.key_cache[layer_idx].shape[-1] == 0: |
|
|
self.key_cache[layer_idx] = key_states |
|
|
self.value_cache[layer_idx] = value_states |
|
|
else: |
|
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) |
|
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) |
|
|
|
|
|
return self.key_cache[layer_idx], self.value_cache[layer_idx] |
|
|
|
|
|
def get_seq_length(self, layer_idx=None) -> int: |
|
|
if layer_idx is None: |
|
|
max_key_len = max(cache.shape[-2] for cache in self.key_cache) |
|
|
return max_key_len |
|
|
|
|
|
if self.key_cache[layer_idx].shape[-1] == 0: |
|
|
return 0 |
|
|
|
|
|
return self.key_cache[layer_idx].shape[-2] |
|
|
|
|
|
|
|
|
|
|
|
class NemotronFlashAttention(nn.Module): |
|
|
|
|
|
def __init__(self, config: NemotronFlashConfig, layer_idx: Optional[int] = None, input_hidden_size=None, output_hidden_size=None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
if layer_idx is None: |
|
|
logger.warning_once( |
|
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
|
"when creating this class." |
|
|
) |
|
|
|
|
|
self.hidden_size = config.attn_hidden_size if config.attn_hidden_size > 0 else config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
self.rope_theta = config.rope_theta |
|
|
|
|
|
self.kq_head_dim = config.kq_head_dim if config.kq_head_dim > 0 else self.head_dim |
|
|
self.v_head_dim = config.v_head_dim if config.v_head_dim > 0 else self.head_dim |
|
|
|
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.is_causal = True |
|
|
self.attention_dropout = config.attention_dropout |
|
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size and self.kq_head_dim == self.head_dim: |
|
|
raise ValueError( |
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
|
f" and `num_heads`: {self.num_heads})." |
|
|
) |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_heads * self.kq_head_dim, bias=False) |
|
|
self.k_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.kq_head_dim, bias=False) |
|
|
self.v_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.v_head_dim, bias=False) |
|
|
|
|
|
if output_hidden_size is None: |
|
|
output_hidden_size = self.hidden_size |
|
|
|
|
|
self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, output_hidden_size, bias=False) |
|
|
|
|
|
if self.config.kq_norm == "rms": |
|
|
self.k_norm = NemotronFlashRMSNorm(self.kq_head_dim) |
|
|
self.q_norm = NemotronFlashRMSNorm(self.kq_head_dim) |
|
|
elif self.config.kq_norm == "none": |
|
|
self.k_norm = None |
|
|
self.q_norm = None |
|
|
else: |
|
|
raise NotImplementedError(f"Unknown kq_norm: {self.config.kq_norm}") |
|
|
|
|
|
if self.config.rope: |
|
|
self._init_rope() |
|
|
|
|
|
def _init_rope(self): |
|
|
self.rotary_emb = LlamaRotaryEmbedding( |
|
|
config=self.config, |
|
|
dim=self.kq_head_dim, |
|
|
base=self.rope_theta, |
|
|
device=torch.device("cuda"), |
|
|
) |
|
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
use_swa=False, |
|
|
query_states = None, |
|
|
key_states=None, |
|
|
value_states=None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
raise NotImplementedError("NemotronFlashAttention is an abstract class. Use one of the subclasses.") |
|
|
|
|
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
|
return ( |
|
|
indices, |
|
|
cu_seqlens, |
|
|
max_seqlen_in_batch, |
|
|
) |
|
|
|
|
|
|
|
|
class NemotronFlashFlashAttention2(NemotronFlashAttention): |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
use_swa=False, |
|
|
query_states = None, |
|
|
key_states=None, |
|
|
value_states=None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
if "padding_mask" in kwargs: |
|
|
warnings.warn( |
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
|
) |
|
|
|
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous() |
|
|
|
|
|
if self.q_norm is not None: |
|
|
query_states = self.q_norm(query_states) |
|
|
|
|
|
if self.config.rope: |
|
|
cos, sin = self.rotary_emb(hidden_states, position_ids) |
|
|
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin) |
|
|
|
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2) |
|
|
|
|
|
if self.k_norm is not None: |
|
|
key_states = self.k_norm(key_states) |
|
|
|
|
|
if self.config.rope: |
|
|
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin) |
|
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
|
if past_key_value is not None: |
|
|
if self.layer_idx is None: |
|
|
raise ValueError( |
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
|
"with a layer index." |
|
|
) |
|
|
kv_seq_len += past_key_value.get_seq_length(self.layer_idx) |
|
|
|
|
|
use_sliding_windows = ( |
|
|
_flash_supports_window_size |
|
|
and getattr(self.config, "sliding_window", None) is not None |
|
|
and kv_seq_len > self.config.sliding_window |
|
|
and use_swa |
|
|
) |
|
|
|
|
|
if not _flash_supports_window_size: |
|
|
logger.warning_once( |
|
|
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation" |
|
|
" make sure to upgrade flash-attn library." |
|
|
) |
|
|
|
|
|
swa_processed_flag = False |
|
|
if past_key_value is not None and use_cache: |
|
|
kv_layer_idx = self.layer_idx |
|
|
|
|
|
cache_has_contents = past_key_value.get_seq_length(kv_layer_idx) > 0 |
|
|
|
|
|
if ( |
|
|
getattr(self.config, "sliding_window", None) is not None |
|
|
and kv_seq_len > self.config.sliding_window |
|
|
and cache_has_contents |
|
|
and use_swa |
|
|
): |
|
|
slicing_tokens = 1 - self.config.sliding_window |
|
|
|
|
|
past_key = past_key_value[kv_layer_idx][0] |
|
|
past_value = past_key_value[kv_layer_idx][1] |
|
|
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
|
|
past_key_value.key_cache[kv_layer_idx] = past_key |
|
|
past_key_value.value_cache[kv_layer_idx] = past_value |
|
|
|
|
|
if attention_mask is not None: |
|
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) |
|
|
|
|
|
swa_processed_flag = True |
|
|
|
|
|
key_states, value_states = past_key_value.update(key_states, value_states, kv_layer_idx) |
|
|
|
|
|
key_states_no_repeat = key_states |
|
|
value_states_no_repeat = value_states |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
input_dtype = query_states.dtype |
|
|
if input_dtype == torch.float32: |
|
|
if torch.is_autocast_enabled(): |
|
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
|
target_dtype = self.config._pre_quantization_dtype |
|
|
else: |
|
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
|
|
logger.warning_once( |
|
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
|
f" {target_dtype}." |
|
|
) |
|
|
|
|
|
query_states = query_states.to(target_dtype) |
|
|
key_states = key_states.to(target_dtype) |
|
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
attn_output = self._flash_attention_forward( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
q_len, |
|
|
dropout=dropout_rate, |
|
|
use_sliding_windows=use_sliding_windows and not swa_processed_flag, |
|
|
) |
|
|
|
|
|
v_dim = value_states.shape[-2] * value_states.shape[-1] |
|
|
attn_output = attn_output.reshape(-1, q_len, v_dim).contiguous() |
|
|
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
if not output_attentions: |
|
|
attn_weights = None |
|
|
|
|
|
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat) |
|
|
|
|
|
def _flash_attention_forward( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
query_length, |
|
|
dropout=0.0, |
|
|
softmax_scale=None, |
|
|
use_sliding_windows=False, |
|
|
): |
|
|
""" |
|
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
|
|
Args: |
|
|
query_states (`torch.Tensor`): |
|
|
Input query states to be passed to Flash Attention API |
|
|
key_states (`torch.Tensor`): |
|
|
Input key states to be passed to Flash Attention API |
|
|
value_states (`torch.Tensor`): |
|
|
Input value states to be passed to Flash Attention API |
|
|
attention_mask (`torch.Tensor`): |
|
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
|
dropout (`int`, *optional*): |
|
|
Attention dropout |
|
|
softmax_scale (`float`, *optional*): |
|
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
|
use_sliding_windows (`bool`, *optional*): |
|
|
Whether to activate sliding window attention. |
|
|
""" |
|
|
if not self._flash_attn_uses_top_left_mask: |
|
|
causal = self.is_causal |
|
|
else: |
|
|
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
|
batch_size = query_states.shape[0] |
|
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
|
query_states, key_states, value_states, attention_mask, query_length |
|
|
) |
|
|
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
|
|
if not use_sliding_windows: |
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
cu_seqlens_q=cu_seqlens_q, |
|
|
cu_seqlens_k=cu_seqlens_k, |
|
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
|
dropout_p=dropout, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
) |
|
|
else: |
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
cu_seqlens_q=cu_seqlens_q, |
|
|
cu_seqlens_k=cu_seqlens_k, |
|
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
|
dropout_p=dropout, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
|
) |
|
|
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
|
else: |
|
|
if not use_sliding_windows: |
|
|
attn_output = flash_attn_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
dropout, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
) |
|
|
else: |
|
|
attn_output = flash_attn_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
dropout, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
|
) |
|
|
|
|
|
return attn_output |
|
|
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape |
|
|
|
|
|
|
|
|
|
|
|
if kv_seq_len != attention_mask.shape[-1]: |
|
|
attention_mask_num_tokens = attention_mask.shape[-1] |
|
|
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] |
|
|
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
|
|
|
|
if not self.training and not type(key_layer) == torch.Tensor: |
|
|
key_layer = torch.tensor(key_layer.clone()) |
|
|
value_layer = torch.tensor(value_layer.clone()) |
|
|
query_layer = torch.tensor(query_layer.clone()) |
|
|
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
|
|
|
if query_length == kv_seq_len: |
|
|
query_layer = index_first_axis( |
|
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k |
|
|
) |
|
|
cu_seqlens_q = cu_seqlens_k |
|
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
|
indices_q = indices_k |
|
|
elif query_length == 1: |
|
|
max_seqlen_in_batch_q = 1 |
|
|
cu_seqlens_q = torch.arange( |
|
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
|
) |
|
|
indices_q = cu_seqlens_q[:-1] |
|
|
query_layer = query_layer.squeeze(1) |
|
|
else: |
|
|
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
|
|
return ( |
|
|
query_layer, |
|
|
key_layer, |
|
|
value_layer, |
|
|
indices_q, |
|
|
(cu_seqlens_q, cu_seqlens_k), |
|
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
class NemotronFlashSDPAAttention(nn.Module): |
|
|
|
|
|
def __init__(self, config, layer_idx: int, reuse_kv=False): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
|
|
|
self.q_proj = nn.Linear( |
|
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=False |
|
|
) |
|
|
self.k_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False |
|
|
) |
|
|
self.v_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False |
|
|
) |
|
|
self.o_proj = nn.Linear( |
|
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=False |
|
|
) |
|
|
|
|
|
self.sliding_window = self.config.sliding_window if self.layer_idx not in self.config.global_attn_idx else None |
|
|
|
|
|
self.rotary_emb = NemotronFlashRotaryEmbedding(config=config) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
**kwargs, |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = self.rotary_emb(hidden_states, position_ids) |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
past_seen_tokens = past_key_value.get_seq_length() |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=hidden_states.device |
|
|
) |
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS['flash_attention_2'] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
return attn_output, attn_weights, past_key_value, (key_states, value_states) |
|
|
|
|
|
|
|
|
class NemotronFlashRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
|
|
|
class NemotronFlashFusedMHA(NemotronFlashAttention): |
|
|
def __init__(self, *args, **kwargs): |
|
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
self.fused_mha_interface = fused_mha_interface |
|
|
|
|
|
def init_kv_cache(self, max_batch_size, max_seq_len, page_size=-1): |
|
|
if hasattr(self, 'k_cache'): |
|
|
del self.k_cache |
|
|
del self.v_cache |
|
|
|
|
|
if hasattr(self, 'page_table') and self.page_table is not None: |
|
|
del self.page_table |
|
|
|
|
|
import gc |
|
|
gc.collect() |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
if page_size is not None and page_size > 0: |
|
|
batch_max_pages = (max_seq_len + page_size - 1) // page_size |
|
|
cache_max_pages = (max_batch_size * max_seq_len + page_size - 1) // page_size |
|
|
self.k_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight) |
|
|
self.v_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight) |
|
|
|
|
|
self.page_table = torch.zeros(max_batch_size, batch_max_pages, device=self.q_proj.weight.device, dtype=torch.int32) |
|
|
else: |
|
|
self.k_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight) |
|
|
self.v_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight) |
|
|
|
|
|
self.page_table = None |
|
|
|
|
|
self.max_seq_len = max_seq_len |
|
|
|
|
|
|
|
|
def reset_kv_cache(self): |
|
|
self.k_cache = self.k_cache.zero_() |
|
|
self.v_cache = self.v_cache.zero_() |
|
|
|
|
|
if self.page_table is not None: |
|
|
self.page_table = self.page_table.zero_() |
|
|
|
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
use_swa=False, |
|
|
query_states = None, |
|
|
key_states=None, |
|
|
value_states=None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
if not hasattr(self, 'k_cache'): |
|
|
self.init_kv_cache(max_batch_size=1, max_seq_len=8000) |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous() |
|
|
|
|
|
if self.q_norm is not None: |
|
|
query_states = self.q_norm(query_states) |
|
|
|
|
|
if self.config.rope: |
|
|
cos, sin = self.rotary_emb(hidden_states, position_ids) |
|
|
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin) |
|
|
|
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2) |
|
|
|
|
|
if self.k_norm is not None: |
|
|
key_states = self.k_norm(key_states) |
|
|
|
|
|
if self.config.rope: |
|
|
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin) |
|
|
|
|
|
key_states_no_repeat = key_states |
|
|
value_states_no_repeat = value_states |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
if self.k_cache.device != query_states.device: |
|
|
self.k_cache = self.k_cache.to(query_states) |
|
|
self.v_cache = self.v_cache.to(query_states) |
|
|
|
|
|
attn_output = self.fused_mha_interface( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
k_cache=self.k_cache, |
|
|
v_cache=self.v_cache, |
|
|
page_table=self.page_table, |
|
|
max_seq_len=self.max_seq_len, |
|
|
position_ids=position_ids, |
|
|
) |
|
|
|
|
|
v_dim = query_states.shape[-2] * value_states.shape[-1] |
|
|
attn_output = attn_output.reshape(bsz, q_len, v_dim).contiguous() |
|
|
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
if not output_attentions: |
|
|
attn_weights = None |
|
|
|
|
|
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat) |
|
|
|
|
|
|
|
|
JAMBA_ATTENTION_CLASSES = { |
|
|
"flash_attention_2": NemotronFlashFlashAttention2, |
|
|
"fused_mha": NemotronFlashFusedMHA, |
|
|
"sdpa": NemotronFlashSDPAAttention, |
|
|
} |
|
|
|
|
|
class NemotronFlashMLP(nn.Module): |
|
|
def __init__(self, config: NemotronFlashConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.act_fn_name = config.mlp_hidden_act |
|
|
self.act_fn = ACT2FN[self.act_fn_name] |
|
|
|
|
|
if config.ffn_expand_ratio is not None: |
|
|
self.ffn_dim = int(config.ffn_expand_ratio * config.hidden_size) // 128 * 128 |
|
|
else: |
|
|
self.ffn_dim = config.intermediate_size |
|
|
|
|
|
self.hidden_dim = config.hidden_size |
|
|
|
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
if self.act_fn_name == "silu": |
|
|
self.gate_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
|
self.down_proj = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
|
|
|
|
|
|
|
def forward(self, x): |
|
|
if self.act_fn_name == "silu": |
|
|
output = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
elif self.act_fn_name == "relu2": |
|
|
output = self.down_proj(self.act_fn(self.up_proj(x))) |
|
|
else: |
|
|
raise NotImplementedError(f"No such hidden_act: {self.act_fn_name}") |
|
|
|
|
|
return output |
|
|
|
|
|
|
|
|
class NemotronFlashAttentionDecoderLayer(nn.Module): |
|
|
def __init__(self, config: NemotronFlashConfig, layer_idx: int,): |
|
|
super().__init__() |
|
|
|
|
|
self.config = config |
|
|
|
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
self.self_attn = JAMBA_ATTENTION_CLASSES[config.attn_implementation](config, layer_idx) |
|
|
|
|
|
if self.config.intermediate_size > 0: |
|
|
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx) |
|
|
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
else: |
|
|
self.ffn = None |
|
|
self.pre_ffn_layernorm = None |
|
|
|
|
|
self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
use_swa=False, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
if "padding_mask" in kwargs: |
|
|
warnings.warn( |
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
|
) |
|
|
|
|
|
if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]: |
|
|
position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) |
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
if self.input_layernorm is not None: |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value, current_kv = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
use_swa=use_swa, |
|
|
) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
if self.ffn is not None: |
|
|
residual = hidden_states |
|
|
if self.pre_ffn_layernorm is not None: |
|
|
hidden_states = self.pre_ffn_layernorm(hidden_states) |
|
|
hidden_states = self.ffn(hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
if use_cache: |
|
|
outputs += (present_key_value,) |
|
|
|
|
|
outputs += (current_kv,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
|
|
class FFNDecoderLayer(nn.Module): |
|
|
def __init__(self, config: NemotronFlashConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
|
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx) |
|
|
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
use_swa=False, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
if "padding_mask" in kwargs: |
|
|
warnings.warn( |
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
|
) |
|
|
|
|
|
residual = hidden_states |
|
|
if self.pre_ffn_layernorm is not None: |
|
|
hidden_states = self.pre_ffn_layernorm(hidden_states) |
|
|
hidden_states = self.ffn(hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (None,) |
|
|
|
|
|
if use_cache: |
|
|
outputs += (None,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
class NemotronFlashMambaDecoderLayer(nn.Module): |
|
|
def __init__(self, config: NemotronFlashConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
|
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
self.mamba = Mamba2(config=config, layer_idx=layer_idx) |
|
|
|
|
|
self.intermediate_size = config.intermediate_size |
|
|
if self.intermediate_size > 0: |
|
|
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx) |
|
|
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
else: |
|
|
self.ffn = None |
|
|
self.pre_ffn_layernorm = None |
|
|
|
|
|
self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[AttentionDynamicCache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
use_swa=False, |
|
|
mamba_inference_params=None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
if "padding_mask" in kwargs: |
|
|
warnings.warn( |
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
|
) |
|
|
|
|
|
if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]: |
|
|
position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) |
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
if self.input_layernorm is not None: |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, present_key_value = self.mamba( |
|
|
hidden_states=hidden_states, |
|
|
past_key_value=past_key_value, |
|
|
attention_mask=attention_mask, |
|
|
inference_params=mamba_inference_params, |
|
|
) |
|
|
|
|
|
attn_key_value = None |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
if self.intermediate_size > 0: |
|
|
residual = hidden_states |
|
|
|
|
|
if self.pre_ffn_layernorm is not None: |
|
|
hidden_states = self.pre_ffn_layernorm(hidden_states) |
|
|
|
|
|
hidden_states = self.ffn(hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if use_cache: |
|
|
outputs += (present_key_value,) |
|
|
|
|
|
outputs += (attn_key_value,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
def _get_past_seqlen(self, past_key_value, seqlen): |
|
|
if past_key_value is None: |
|
|
return seqlen |
|
|
past_seqlen = past_key_value.get_seq_length(self.layer_idx) |
|
|
|
|
|
if past_seqlen == 0: |
|
|
return seqlen |
|
|
|
|
|
return past_seqlen |
|
|
|
|
|
|
|
|
|
|
|
class NemotronFlashHybridDecoderLayer(nn.Module): |
|
|
def __init__(self, config: NemotronFlashConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
|
|
|
self.config = config |
|
|
|
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
if config.hybrid_decoder_layer == 'mamba': |
|
|
self.mamba = Mamba2(config=config, layer_idx=layer_idx) |
|
|
if config.hybrid_decoder_layer == 'deltanet': |
|
|
if config.layer_types is not None: |
|
|
deltanet_idx = sum(1 for i in range(layer_idx) if config.layer_types[i] == 'deltanet') |
|
|
else: |
|
|
deltanet_idx = layer_idx |
|
|
|
|
|
self.gla = DeltaNet(hidden_size=config.hidden_size, num_heads=config.num_attention_heads, layer_idx=deltanet_idx, config=self.config) |
|
|
else: |
|
|
raise ValueError(f"Not supported: {config.hybrid_decoder_layer}") |
|
|
|
|
|
self.config = config |
|
|
|
|
|
if self.config.intermediate_size > 0: |
|
|
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx) |
|
|
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
else: |
|
|
self.ffn = None |
|
|
self.pre_ffn_layernorm = None |
|
|
|
|
|
self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[AttentionDynamicCache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
fla_past_key_values = None, |
|
|
mamba_inference_params = None, |
|
|
use_swa=False, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
if "padding_mask" in kwargs: |
|
|
warnings.warn( |
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
|
) |
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
if self.config.hybrid_decoder_layer == 'mamba': |
|
|
hybrid_op_hidden_states, mamba_present_key_value = self.mamba( |
|
|
hidden_states=hidden_states, |
|
|
past_key_value=past_key_value, |
|
|
attention_mask=attention_mask, |
|
|
inference_params=mamba_inference_params, |
|
|
) |
|
|
|
|
|
else: |
|
|
hybrid_op_hidden_states, _, fla_past_key_values = self.gla( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
past_key_values=fla_past_key_values, |
|
|
use_cache=use_cache, |
|
|
) |
|
|
|
|
|
self_attn_weights = self_attn_present_key_value = current_kv = None |
|
|
|
|
|
hidden_states = residual + hybrid_op_hidden_states |
|
|
|
|
|
if self.ffn is not None: |
|
|
residual = hidden_states |
|
|
hidden_states = self.pre_ffn_layernorm(hidden_states) |
|
|
|
|
|
hidden_states = self.ffn(hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
if use_cache: |
|
|
outputs += (self_attn_present_key_value,) |
|
|
|
|
|
outputs += (current_kv,) |
|
|
|
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
|
|
class NemotronFlashPreTrainedModel(PreTrainedModel): |
|
|
config_class = NemotronFlashConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["NemotronFlashAttentionDecoderLayer", "NemotronFlashMambaDecoderLayer"] |
|
|
_skip_keys_device_placement = "past_key_values" |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_cache_class = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
|
|
|
class NemotronFlashModel(NemotronFlashPreTrainedModel): |
|
|
|
|
|
def __init__(self, config: NemotronFlashConfig): |
|
|
super().__init__(config) |
|
|
|
|
|
config.attn_implementation = config.attn_implementation_new |
|
|
config._attn_implementation = config.attn_implementation_new |
|
|
|
|
|
self.config = config |
|
|
|
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
|
|
decoder_layers = [] |
|
|
|
|
|
layer_type = [] |
|
|
for i in range(config.num_hidden_layers): |
|
|
if config.layer_types[i] in ['deltanet']: |
|
|
layer_type.append('m') |
|
|
config_new = copy.deepcopy(config) |
|
|
config_new.hybrid_decoder_layer = 'deltanet' |
|
|
decoder_layer = NemotronFlashHybridDecoderLayer(config_new, layer_idx=i) |
|
|
elif config.layer_types[i] in ['m', 'm2']: |
|
|
layer_type.append('m') |
|
|
decoder_layer = NemotronFlashMambaDecoderLayer(config, layer_idx=i) |
|
|
elif config.layer_types[i] == 'a': |
|
|
layer_type.append('a') |
|
|
decoder_layer = NemotronFlashAttentionDecoderLayer(config, layer_idx=i) |
|
|
elif config.layer_types[i] == 'f': |
|
|
layer_type.append('a') |
|
|
decoder_layer = FFNDecoderLayer(config, layer_idx=i) |
|
|
else: |
|
|
raise ValueError(f"Unsupported layer type {config.layer_types[i]}") |
|
|
|
|
|
decoder_layers.append(decoder_layer) |
|
|
|
|
|
config.layer_type = layer_type |
|
|
|
|
|
if config.sliding_window is not None: |
|
|
self.sliding_window = config.sliding_window |
|
|
self.global_attn_idx = config.global_attn_idx |
|
|
else: |
|
|
self.sliding_window = None |
|
|
self.global_attn_idx = None |
|
|
|
|
|
self.layers = nn.ModuleList(decoder_layers) |
|
|
|
|
|
self._attn_implementation = config.attn_implementation |
|
|
|
|
|
self.final_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
if self.config.num_memory_tokens > 0: |
|
|
self.memory_tokens = nn.Parameter(torch.randn(self.config.num_memory_tokens, self.config.hidden_size)) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.has_previous_state = False |
|
|
|
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Union[List[torch.FloatTensor], AttentionDynamicCache]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
fla_past_key_values = None, |
|
|
mamba_inference_params = None, |
|
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
|
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
|
elif input_ids is not None: |
|
|
batch_size, seq_length = input_ids.shape |
|
|
elif inputs_embeds is not None: |
|
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
else: |
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
if use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
if position_ids is None: |
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device |
|
|
) |
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
|
else: |
|
|
if self.config.num_memory_tokens > 0 and past_key_values is not None and not self.has_previous_state: |
|
|
position_ids = position_ids.view(-1, seq_length + self.config.num_memory_tokens).long() |
|
|
else: |
|
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
ori_b, ori_n = inputs_embeds.shape[0], inputs_embeds.shape[1] |
|
|
|
|
|
if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state): |
|
|
mem = repeat(self.memory_tokens, 'n d -> b n d', b = inputs_embeds.shape[0]) |
|
|
inputs_embeds, mem_packed_shape = pack((mem, inputs_embeds), 'b * d') |
|
|
|
|
|
if position_ids is not None and position_ids.shape[1] != inputs_embeds.shape[1]: |
|
|
position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0) |
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] < inputs_embeds.shape[1]: |
|
|
assert attention_mask.shape[1] + self.config.num_memory_tokens == inputs_embeds.shape[1] |
|
|
attention_mask = torch.cat([torch.ones(inputs_embeds.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1) |
|
|
|
|
|
|
|
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: |
|
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
|
|
if is_padding_right: |
|
|
raise ValueError( |
|
|
"You are attempting to perform batched generation with padding_side='right'" |
|
|
" this may lead to unexpected behaviour for Flash Attention version of NemotronFlash. Make sure to " |
|
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
|
) |
|
|
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
next_decoder_cache = None |
|
|
|
|
|
for i, decoder_layer in enumerate(self.layers): |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
attention_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
use_cache, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
use_swa=self.sliding_window is not None and i not in self.global_attn_idx, |
|
|
fla_past_key_values=fla_past_key_values, |
|
|
mamba_inference_params=mamba_inference_params, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if use_cache: |
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
if self.final_layernorm is not None: |
|
|
hidden_states = self.final_layernorm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state): |
|
|
mem, hidden_states = unpack(hidden_states, mem_packed_shape, 'b * d') |
|
|
hidden_states = hidden_states[:, :ori_n, :] |
|
|
|
|
|
if past_key_values is not None and not self.has_previous_state: |
|
|
self.has_previous_state = True |
|
|
|
|
|
next_cache = None |
|
|
if use_cache: |
|
|
next_cache = next_decoder_cache |
|
|
|
|
|
if not return_dict: |
|
|
return tuple( |
|
|
v |
|
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] |
|
|
if v is not None |
|
|
) |
|
|
return MoeModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if (fla_past_key_values is None and mamba_inference_params is None) else (past_key_values, fla_past_key_values, mamba_inference_params), |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
class NemotronFlashForCausalLM(NemotronFlashPreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config: NemotronFlashConfig): |
|
|
super().__init__(config) |
|
|
self.config = config |
|
|
self.model = NemotronFlashModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
calc_logits_for_entire_prompt: Optional[bool] = True, |
|
|
fla_past_key_values = None, |
|
|
mamba_inference_params = None, |
|
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
|
r""" |
|
|
Args: |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
calc_logits_for_entire_prompt (`bool`, *optional*): |
|
|
Whether or not to calculate the logits for the entire prompt, or just the last token. Only last token |
|
|
logits are needed for generation, and calculating them only for that token can save memory, |
|
|
which becomes pretty significant for long sequences. |
|
|
|
|
|
Returns: |
|
|
```""" |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
|
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
fla_past_key_values=fla_past_key_values, |
|
|
mamba_inference_params=mamba_inference_params, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
if calc_logits_for_entire_prompt: |
|
|
logits = self.lm_head(hidden_states) |
|
|
else: |
|
|
logits = self.lm_head(hidden_states[..., -1:, :]) |
|
|
|
|
|
logits = logits / self.lm_head.weight.norm(p=2, dim=1) |
|
|
|
|
|
logits = logits.float() |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return MoeCausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def get_init_cache(self, max_seqlen, batch_size=1): |
|
|
past_key_values = AttentionDynamicCache( |
|
|
self.config, batch_size, self.dtype, device=self.device, layer_type=self.config.layer_type |
|
|
) |
|
|
|
|
|
mamba_inference_params = InferenceParams(max_seqlen=max_seqlen, max_batch_size=batch_size) |
|
|
|
|
|
fla_past_key_values = fla_cache.from_legacy_cache(None) |
|
|
|
|
|
return past_key_values, fla_past_key_values, mamba_inference_params |
|
|
|
|
|
|
|
|
def init_cuda_graph_generation( |
|
|
self, |
|
|
max_new_tokens=128, |
|
|
batch_size=1, |
|
|
device=None, |
|
|
): |
|
|
""" |
|
|
Initialize CUDA graph for generation with proper cache handling and warmup. |
|
|
This function should be called once before generation to set up the graph. |
|
|
|
|
|
Args: |
|
|
max_new_tokens: Maximum number of new tokens to generate |
|
|
batch_size: Batch size for generation |
|
|
device: Device to use (defaults to model device) |
|
|
|
|
|
Returns: |
|
|
generation_state: Dictionary containing all necessary state for generation |
|
|
""" |
|
|
if device is None: |
|
|
device = next(self.parameters()).device |
|
|
|
|
|
self.eval() |
|
|
|
|
|
|
|
|
max_seqlen = max_new_tokens + 2048 + self.config.num_memory_tokens |
|
|
past_key_values, fla_past_key_values, mamba_inference_params = self.get_init_cache( |
|
|
max_seqlen=max_seqlen, batch_size=batch_size |
|
|
) |
|
|
|
|
|
|
|
|
for module in self.modules(): |
|
|
if hasattr(module, 'init_kv_cache'): |
|
|
module.init_kv_cache(max_batch_size=batch_size, max_seq_len=max_seqlen) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
dummy_input = torch.ones((batch_size, 10), dtype=torch.long, device=device) |
|
|
for _ in range(10): |
|
|
self(dummy_input) |
|
|
|
|
|
|
|
|
static_current_input = torch.zeros((batch_size, 1), dtype=torch.long, device=device) |
|
|
static_position_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=device) |
|
|
static_logits = torch.zeros((batch_size, self.config.vocab_size), device=device) |
|
|
|
|
|
|
|
|
self.model.has_previous_state = True |
|
|
if mamba_inference_params is not None: |
|
|
mamba_inference_params.seqlen_offset = 1 |
|
|
|
|
|
|
|
|
for _ in range(10): |
|
|
model_kwargs_warmup = { |
|
|
'input_ids': static_current_input, |
|
|
'fla_past_key_values': fla_past_key_values, |
|
|
'mamba_inference_params': mamba_inference_params, |
|
|
'past_key_values': past_key_values, |
|
|
'use_cache': True, |
|
|
'position_ids': static_position_ids, |
|
|
} |
|
|
warmup_outputs = self(**model_kwargs_warmup) |
|
|
|
|
|
|
|
|
generation_graph = CUDAGraph() |
|
|
with torch.cuda.graph(generation_graph): |
|
|
model_kwargs_graph = { |
|
|
'input_ids': static_current_input, |
|
|
'fla_past_key_values': fla_past_key_values, |
|
|
'mamba_inference_params': mamba_inference_params, |
|
|
'past_key_values': past_key_values, |
|
|
'use_cache': True, |
|
|
'position_ids': static_position_ids, |
|
|
} |
|
|
graph_outputs = self(**model_kwargs_graph) |
|
|
static_logits.copy_(graph_outputs.logits[:, -1, :]) |
|
|
|
|
|
if fla_past_key_values is not None: |
|
|
fla_past_key_values.reset() |
|
|
|
|
|
if mamba_inference_params is not None: |
|
|
mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size) |
|
|
for key in mamba_inference_params.key_value_memory_dict: |
|
|
conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key] |
|
|
conv_state.zero_() |
|
|
ssm_state.zero_() |
|
|
|
|
|
for module in self.modules(): |
|
|
if hasattr(module, 'reset_kv_cache'): |
|
|
module.reset_kv_cache() |
|
|
|
|
|
self.model.has_previous_state = False |
|
|
|
|
|
|
|
|
generation_state = { |
|
|
'generation_graph': generation_graph, |
|
|
'static_current_input': static_current_input, |
|
|
'static_position_ids': static_position_ids, |
|
|
'static_logits': static_logits, |
|
|
'past_key_values': past_key_values, |
|
|
'fla_past_key_values': fla_past_key_values, |
|
|
'mamba_inference_params': mamba_inference_params, |
|
|
'max_seqlen': max_seqlen, |
|
|
'batch_size': batch_size, |
|
|
'device': device, |
|
|
} |
|
|
|
|
|
return generation_state |
|
|
|
|
|
def generate_with_cuda_graph( |
|
|
self, |
|
|
input_ids, |
|
|
generation_state, |
|
|
max_new_tokens=128, |
|
|
temperature=1.0, |
|
|
top_k=0, |
|
|
top_p=0.9, |
|
|
eos_token_id=None, |
|
|
verbose=False, |
|
|
profiling=False, |
|
|
): |
|
|
""" |
|
|
Generate text using pre-initialized CUDA graph state. |
|
|
|
|
|
Args: |
|
|
input_ids: Input token IDs tensor of shape (batch_size, seq_len) |
|
|
generation_state: State dictionary returned by init_cuda_graph_generation |
|
|
max_new_tokens: Maximum number of new tokens to generate |
|
|
temperature: Sampling temperature (0 for greedy) |
|
|
top_k: Top-k filtering (0 to disable) |
|
|
top_p: Top-p filtering (1.0 to disable) |
|
|
eos_token_id: End-of-sequence token ID |
|
|
pad_token_id: Padding token ID |
|
|
verbose: Whether to print generated tokens |
|
|
profiling: Whether to return timing information |
|
|
|
|
|
Returns: |
|
|
generated_ids: Tensor of shape (batch_size, input_len + generated_len) |
|
|
or decode_latency if profiling=True |
|
|
""" |
|
|
self.eval() |
|
|
batch_size = input_ids.shape[0] |
|
|
device = input_ids.device |
|
|
|
|
|
|
|
|
generation_graph = generation_state['generation_graph'] |
|
|
static_current_input = generation_state['static_current_input'] |
|
|
static_position_ids = generation_state['static_position_ids'] |
|
|
static_logits = generation_state['static_logits'] |
|
|
past_key_values = generation_state['past_key_values'] |
|
|
fla_past_key_values = generation_state['fla_past_key_values'] |
|
|
mamba_inference_params = generation_state['mamba_inference_params'] |
|
|
|
|
|
with torch.no_grad(): |
|
|
if mamba_inference_params.seqlen_offset == 0: |
|
|
if fla_past_key_values is not None: |
|
|
fla_past_key_values.reset() |
|
|
|
|
|
if mamba_inference_params is not None: |
|
|
mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size) |
|
|
for key in mamba_inference_params.key_value_memory_dict: |
|
|
conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key] |
|
|
conv_state.zero_() |
|
|
ssm_state.zero_() |
|
|
|
|
|
for module in self.modules(): |
|
|
if hasattr(module, 'reset_kv_cache'): |
|
|
module.reset_kv_cache() |
|
|
|
|
|
self.model.has_previous_state = False |
|
|
|
|
|
|
|
|
position_ids = torch.arange( |
|
|
self.config.num_memory_tokens + input_ids.shape[1], dtype=torch.long, device=device |
|
|
).unsqueeze(0).expand(batch_size, -1) |
|
|
|
|
|
else: |
|
|
|
|
|
position_ids = torch.arange( |
|
|
mamba_inference_params.seqlen_offset, mamba_inference_params.seqlen_offset + input_ids.shape[1], dtype=torch.long, device=device |
|
|
).unsqueeze(0).expand(batch_size, -1) |
|
|
|
|
|
current_input = input_ids |
|
|
|
|
|
model_kwargs = { |
|
|
'input_ids': current_input, |
|
|
'past_key_values': past_key_values, |
|
|
'fla_past_key_values': fla_past_key_values, |
|
|
'mamba_inference_params': mamba_inference_params, |
|
|
'use_cache': True, |
|
|
'position_ids': position_ids, |
|
|
} |
|
|
|
|
|
if profiling: |
|
|
torch.cuda.synchronize() |
|
|
t1 = time.time() |
|
|
|
|
|
|
|
|
outputs = self(**model_kwargs) |
|
|
|
|
|
if mamba_inference_params is not None: |
|
|
if mamba_inference_params.seqlen_offset == 0: |
|
|
mamba_inference_params.seqlen_offset = current_input.shape[1] + self.config.num_memory_tokens |
|
|
else: |
|
|
mamba_inference_params.seqlen_offset += current_input.shape[1] |
|
|
|
|
|
static_position_ids.fill_(position_ids[0, -1]) |
|
|
|
|
|
logits = outputs.logits[:, -1, :] |
|
|
generated_tokens = [] |
|
|
|
|
|
|
|
|
for step in range(max_new_tokens): |
|
|
|
|
|
if temperature == 0: |
|
|
next_token = torch.argmax(logits, dim=-1, keepdim=True) |
|
|
else: |
|
|
next_token = sample_token(logits, temperature=temperature, top_k=top_k, top_p=top_p) |
|
|
|
|
|
generated_tokens.append(next_token) |
|
|
|
|
|
|
|
|
if not profiling and eos_token_id is not None and (next_token == eos_token_id).all(): |
|
|
if verbose: |
|
|
print("\nEOS reached") |
|
|
break |
|
|
|
|
|
|
|
|
static_current_input.copy_(next_token) |
|
|
static_position_ids.add_(1) |
|
|
|
|
|
|
|
|
generation_graph.replay() |
|
|
|
|
|
if mamba_inference_params is not None: |
|
|
mamba_inference_params.seqlen_offset += 1 |
|
|
|
|
|
logits = static_logits.clone() |
|
|
|
|
|
generated_ids = torch.cat([input_ids] + generated_tokens, dim=1) |
|
|
|
|
|
if profiling: |
|
|
torch.cuda.synchronize() |
|
|
t2 = time.time() |
|
|
decode_latency = t2 - t1 |
|
|
return generated_ids, decode_latency |
|
|
|
|
|
return generated_ids |
|
|
|
|
|
|
|
|
def generate_with_cache( |
|
|
self, |
|
|
input_ids, |
|
|
max_new_tokens=128, |
|
|
temperature=1.0, |
|
|
top_k=0, |
|
|
top_p=0.9, |
|
|
eos_token_id=None, |
|
|
verbose=False, |
|
|
): |
|
|
""" |
|
|
Generate text using the hybrid model with proper cache handling using pre-initialized CUDA graph state. |
|
|
|
|
|
Args: |
|
|
input_ids: Input token IDs tensor of shape (batch_size, seq_len) |
|
|
max_new_tokens: Maximum number of new tokens to generate |
|
|
temperature: Sampling temperature (0 for greedy) |
|
|
top_k: Top-k filtering (0 to disable) |
|
|
top_p: Top-p filtering (1.0 to disable) |
|
|
eos_token_id: End-of-sequence token ID |
|
|
verbose: Whether to print generated tokens |
|
|
|
|
|
Returns: |
|
|
generated_ids: Tensor of shape (batch_size, input_len + generated_len) |
|
|
""" |
|
|
self.eval() |
|
|
batch_size = input_ids.shape[0] |
|
|
device = input_ids.device |
|
|
|
|
|
with torch.no_grad(): |
|
|
max_seqlen = input_ids.shape[1] + max_new_tokens + self.config.num_memory_tokens |
|
|
past_key_values, fla_past_key_values, mamba_inference_params = self.get_init_cache(max_seqlen=max_seqlen, batch_size=batch_size) |
|
|
|
|
|
for module in self.model.modules(): |
|
|
if hasattr(module, 'init_kv_cache'): |
|
|
module.init_kv_cache(max_batch_size=batch_size, max_seq_len=max_seqlen) |
|
|
|
|
|
|
|
|
current_input = input_ids |
|
|
position_ids = torch.arange( |
|
|
self.model.config.num_memory_tokens + current_input.shape[1], dtype=torch.long, device=device |
|
|
).unsqueeze(0).expand(batch_size, -1) |
|
|
|
|
|
model_kwargs = { |
|
|
'input_ids': current_input, |
|
|
'past_key_values': past_key_values, |
|
|
'fla_past_key_values': fla_past_key_values, |
|
|
'mamba_inference_params': mamba_inference_params, |
|
|
'use_cache': True, |
|
|
'position_ids': position_ids, |
|
|
} |
|
|
|
|
|
outputs = self(**model_kwargs) |
|
|
|
|
|
|
|
|
mamba_inference_params.seqlen_offset = current_input.shape[1] + self.model.config.num_memory_tokens |
|
|
|
|
|
logits = outputs.logits[:, -1, :] |
|
|
|
|
|
generated_tokens = [] |
|
|
|
|
|
|
|
|
for step in range(max_new_tokens): |
|
|
|
|
|
if temperature == 0: |
|
|
next_token = torch.argmax(logits, dim=-1, keepdim=True) |
|
|
else: |
|
|
next_token = sample_token(logits, temperature=temperature, top_k=top_k, top_p=top_p) |
|
|
|
|
|
generated_tokens.append(next_token) |
|
|
|
|
|
|
|
|
if eos_token_id is not None and (next_token == eos_token_id).all(): |
|
|
if verbose: |
|
|
print("\nEOS reached") |
|
|
break |
|
|
|
|
|
current_input = next_token |
|
|
|
|
|
|
|
|
if position_ids is not None: |
|
|
position_ids = torch.full( |
|
|
(batch_size, 1), |
|
|
position_ids[0, -1] + 1, |
|
|
dtype=torch.long, |
|
|
device=device |
|
|
) |
|
|
|
|
|
|
|
|
model_kwargs = { |
|
|
'input_ids': current_input, |
|
|
'fla_past_key_values': fla_past_key_values, |
|
|
'mamba_inference_params': mamba_inference_params, |
|
|
'past_key_values': past_key_values, |
|
|
'use_cache': True, |
|
|
'position_ids': position_ids, |
|
|
} |
|
|
|
|
|
outputs = self(**model_kwargs) |
|
|
|
|
|
mamba_inference_params.seqlen_offset += 1 |
|
|
|
|
|
logits = outputs.logits[:, -1, :] |
|
|
|
|
|
generated_ids = torch.cat([input_ids] + generated_tokens, dim=1) |
|
|
|
|
|
return generated_ids |
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
inputs_embeds=None, |
|
|
**kwargs, |
|
|
): |
|
|
if self.config.num_memory_tokens > 0: |
|
|
attention_mask = torch.cat([torch.ones(input_ids.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1) |
|
|
|
|
|
|
|
|
past_key_values = None |
|
|
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
|
|
|
|
|
if inputs_embeds is not None: |
|
|
if input_ids.shape[1] == 0: |
|
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
|
else: |
|
|
inputs_embeds_new = self.model.embed_tokens(input_ids) |
|
|
model_inputs = {"inputs_embeds": torch.cat([inputs_embeds, inputs_embeds_new], dim=1)} |
|
|
else: |
|
|
model_inputs = {"input_ids": input_ids} |
|
|
|
|
|
model_inputs.update( |
|
|
{ |
|
|
"position_ids": position_ids, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": kwargs.get("use_cache"), |
|
|
"attention_mask": attention_mask, |
|
|
} |
|
|
) |
|
|
return model_inputs |
|
|
|
|
|
|
|
|
def sample_token(logits, temperature=1.0, top_k=0, top_p=0.9): |
|
|
""" |
|
|
Sample a token from logits with temperature, top-k, and top-p filtering. |
|
|
|
|
|
Args: |
|
|
logits: Tensor of shape (batch_size, vocab_size) |
|
|
temperature: Sampling temperature |
|
|
top_k: Top-k filtering (0 to disable) |
|
|
top_p: Top-p filtering (1.0 to disable) |
|
|
|
|
|
Returns: |
|
|
next_token: Tensor of shape (batch_size, 1) |
|
|
""" |
|
|
if temperature == 0: |
|
|
return torch.argmax(logits, dim=-1, keepdim=True) |
|
|
|
|
|
logits = logits / temperature |
|
|
|
|
|
if top_k > 0: |
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
|
logits.masked_fill_(indices_to_remove, float('-inf')) |
|
|
|
|
|
if top_p < 1.0: |
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) |
|
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
|
|
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
|
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove) |
|
|
logits.masked_fill_(indices_to_remove, float('-inf')) |
|
|
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
return torch.multinomial(probs, num_samples=1) |
|
|
|
|
|
|