Nemotron-Flash-1B / modeling_nemotron_flash.py
YongganFu's picture
Upload NemotronFlashForCausalLM
c50ca7b verified
# coding=utf-8
# Copyright 2025 NVIDIA Corporation. All rights reserved.
""" PyTorch Nemotron-Flash model."""
import inspect
import math
import copy
import warnings
from typing import Any, Dict, List, Optional, Tuple, Union
import time
import numpy as np
import os
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
torch._inductor.config.max_autotune_gemm_backends = ["aten"]
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.generation import GenerationMixin
try:
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
except ImportError:
pass
from transformers.utils import (
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_nemotron_flash import NemotronFlashConfig
import math
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
from einops import rearrange, repeat, reduce, pack, unpack
from .fused_mha_with_cache import fused_mha_interface
from .mamba2 import Mamba2
from mamba_ssm.utils.generation import InferenceParams
from .delta_net import Cache as fla_cache
from .delta_net import DeltaNet
import torch._dynamo
torch._dynamo.config.suppress_errors = True
from torch.cuda import CUDAGraph
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "NemotronFlashConfig"
class NemotronFlashRMSNorm(nn.Module):
def __init__(self, hidden_size, learnable_weight=True, eps=1e-6):
super().__init__()
if learnable_weight:
self.weight = nn.Parameter(torch.ones(hidden_size))
else:
self.weight = None
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
if self.weight is not None:
return self.weight * hidden_states.to(input_dtype)
else:
return hidden_states.to(input_dtype)
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, config, dim, base=10000, device=None, scaling_factor=1.0):
super().__init__()
self.scaling_factor = scaling_factor
self.dim = dim
self.base = base
self.config = config
self.rope_type = config.rope_type
self.factor = 2
max_position_embeddings = self.config.max_position_embeddings
if config.rope_type is None or config.rope_type == "default":
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.max_seq_len_cached = max_position_embeddings
elif config.rope_type == 'ntk':
assert self.config.orig_max_position_embeddings is not None
orig_max_position_embeddings = self.config.orig_max_position_embeddings
base = base * ((self.factor * max_position_embeddings / orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.max_seq_len_cached = orig_max_position_embeddings
elif config.rope_type == 'dynamic_ntk':
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.original_inv_freq = inv_freq
self.max_seq_len_cached = self.config.orig_max_position_embeddings
else:
raise ValueError(f"Not support rope_type: {config.rope_type}")
self.register_buffer("inv_freq", inv_freq, persistent=False)
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
base = self.base * ((self.factor * seq_len / self.config.orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.max_seq_len_cached = seq_len
if seq_len < self.config.orig_max_position_embeddings and self.max_seq_len_cached > self.config.orig_max_position_embeddings: # reset
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.config.orig_max_position_embeddings
@torch.no_grad()
def forward(self, x, position_ids):
if self.rope_type == 'dynamic_ntk':
self._dynamic_frequency_update(position_ids, device=x.device)
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors."""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
if q is not None:
q_embed = (q * cos) + (rotate_half(q) * sin)
else:
q_embed = None
if k is not None:
k_embed = (k * cos) + (rotate_half(k) * sin)
else:
k_embed = None
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class AttentionDynamicCache(DynamicCache):
def __init__(self, config, batch_size, dtype=torch.float16, device=None, layer_type=None):
self.dtype = dtype
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.key_cache[layer_idx].shape[-1] == 0:
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def get_seq_length(self, layer_idx=None) -> int:
if layer_idx is None:
max_key_len = max(cache.shape[-2] for cache in self.key_cache)
return max_key_len
if self.key_cache[layer_idx].shape[-1] == 0:
return 0
return self.key_cache[layer_idx].shape[-2]
# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention
class NemotronFlashAttention(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: Optional[int] = None, input_hidden_size=None, output_hidden_size=None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.attn_hidden_size if config.attn_hidden_size > 0 else config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.kq_head_dim = config.kq_head_dim if config.kq_head_dim > 0 else self.head_dim
self.v_head_dim = config.v_head_dim if config.v_head_dim > 0 else self.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size and self.kq_head_dim == self.head_dim:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_heads * self.kq_head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.kq_head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.v_head_dim, bias=False)
if output_hidden_size is None:
output_hidden_size = self.hidden_size
self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, output_hidden_size, bias=False)
if self.config.kq_norm == "rms":
self.k_norm = NemotronFlashRMSNorm(self.kq_head_dim)
self.q_norm = NemotronFlashRMSNorm(self.kq_head_dim)
elif self.config.kq_norm == "none":
self.k_norm = None
self.q_norm = None
else:
raise NotImplementedError(f"Unknown kq_norm: {self.config.kq_norm}")
if self.config.rope:
self._init_rope()
def _init_rope(self):
self.rotary_emb = LlamaRotaryEmbedding(
config=self.config,
dim=self.kq_head_dim,
base=self.rope_theta,
device=torch.device("cuda"),
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
use_swa=False,
query_states = None,
key_states=None,
value_states=None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
raise NotImplementedError("NemotronFlashAttention is an abstract class. Use one of the subclasses.")
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2
class NemotronFlashFlashAttention2(NemotronFlashAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
use_swa=False,
query_states = None,
key_states=None,
value_states=None,
**kwargs,
):
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop("padding_mask")
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous()
if self.q_norm is not None:
query_states = self.q_norm(query_states)
if self.config.rope:
cos, sin = self.rotary_emb(hidden_states, position_ids)
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)
if self.k_norm is not None:
key_states = self.k_norm(key_states)
if self.config.rope:
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
use_sliding_windows = (
_flash_supports_window_size
and getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and use_swa
)
if not _flash_supports_window_size:
logger.warning_once(
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
" make sure to upgrade flash-attn library."
)
swa_processed_flag = False
if past_key_value is not None and use_cache:
kv_layer_idx = self.layer_idx
cache_has_contents = past_key_value.get_seq_length(kv_layer_idx) > 0
if (
getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and cache_has_contents
and use_swa
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[kv_layer_idx][0]
past_value = past_key_value[kv_layer_idx][1]
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
past_key_value.key_cache[kv_layer_idx] = past_key
past_key_value.value_cache[kv_layer_idx] = past_value
if attention_mask is not None:
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
swa_processed_flag = True
key_states, value_states = past_key_value.update(key_states, value_states, kv_layer_idx)
key_states_no_repeat = key_states
value_states_no_repeat = value_states
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
key_states = key_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
value_states = value_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
use_sliding_windows=use_sliding_windows and not swa_processed_flag,
)
v_dim = value_states.shape[-2] * value_states.shape[-1]
attn_output = attn_output.reshape(-1, q_len, v_dim).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)
def _flash_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None,
use_sliding_windows=False,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
use_sliding_windows (`bool`, *optional*):
Whether to activate sliding window attention.
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
if not use_sliding_windows:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
if not use_sliding_windows:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
return attn_output
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
# On the first iteration we need to properly re-create the padding mask
# by slicing it on the proper place
if kv_seq_len != attention_mask.shape[-1]:
attention_mask_num_tokens = attention_mask.shape[-1]
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
if not self.training and not type(key_layer) == torch.Tensor: ## this is for handling Mamba2 with output type <class 'mamba_ssm.ops.triton.layernorm_gated.tTensor'>
key_layer = torch.tensor(key_layer.clone())
value_layer = torch.tensor(value_layer.clone())
query_layer = torch.tensor(query_layer.clone())
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class NemotronFlashSDPAAttention(nn.Module):
def __init__(self, config, layer_idx: int, reuse_kv=False):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=False
)
self.sliding_window = self.config.sliding_window if self.layer_idx not in self.config.global_attn_idx else None
self.rotary_emb = NemotronFlashRotaryEmbedding(config=config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor],
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = self.rotary_emb(hidden_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
past_seen_tokens = past_key_value.get_seq_length()
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=hidden_states.device
)
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface = ALL_ATTENTION_FUNCTIONS['flash_attention_2']
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value, (key_states, value_states)
class NemotronFlashRotaryEmbedding(nn.Module):
def __init__(self, config, device=None):
super().__init__()
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
## Interface to use TRTLLM AutoDeploy attention kernel, which enables CUDA Graph capture
class NemotronFlashFusedMHA(NemotronFlashAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.fused_mha_interface = fused_mha_interface
def init_kv_cache(self, max_batch_size, max_seq_len, page_size=-1):
if hasattr(self, 'k_cache'):
del self.k_cache
del self.v_cache
if hasattr(self, 'page_table') and self.page_table is not None:
del self.page_table
import gc
gc.collect()
torch.cuda.empty_cache()
if page_size is not None and page_size > 0:
batch_max_pages = (max_seq_len + page_size - 1) // page_size
cache_max_pages = (max_batch_size * max_seq_len + page_size - 1) // page_size
self.k_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight)
self.v_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight)
self.page_table = torch.zeros(max_batch_size, batch_max_pages, device=self.q_proj.weight.device, dtype=torch.int32)
else:
self.k_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight)
self.v_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight)
self.page_table = None
self.max_seq_len = max_seq_len
def reset_kv_cache(self):
self.k_cache = self.k_cache.zero_()
self.v_cache = self.v_cache.zero_()
if self.page_table is not None:
self.page_table = self.page_table.zero_()
def forward(
self,
hidden_states: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
use_swa=False,
query_states = None,
key_states=None,
value_states=None,
**kwargs,
):
if not hasattr(self, 'k_cache'):
self.init_kv_cache(max_batch_size=1, max_seq_len=8000)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous()
if self.q_norm is not None:
query_states = self.q_norm(query_states)
if self.config.rope:
cos, sin = self.rotary_emb(hidden_states, position_ids)
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)
if self.k_norm is not None:
key_states = self.k_norm(key_states)
if self.config.rope:
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)
key_states_no_repeat = key_states
value_states_no_repeat = value_states
query_states = query_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
key_states = key_states.transpose(1, 2) # (batch, slen, num_kv_heads, head_dim)
value_states = value_states.transpose(1, 2) # (batch, slen, num_kv_heads, head_dim)
if self.k_cache.device != query_states.device:
self.k_cache = self.k_cache.to(query_states)
self.v_cache = self.v_cache.to(query_states)
attn_output = self.fused_mha_interface(
query_states,
key_states,
value_states,
k_cache=self.k_cache,
v_cache=self.v_cache,
page_table=self.page_table,
max_seq_len=self.max_seq_len,
position_ids=position_ids,
)
v_dim = query_states.shape[-2] * value_states.shape[-1]
attn_output = attn_output.reshape(bsz, q_len, v_dim).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)
JAMBA_ATTENTION_CLASSES = {
"flash_attention_2": NemotronFlashFlashAttention2,
"fused_mha": NemotronFlashFusedMHA,
"sdpa": NemotronFlashSDPAAttention,
}
class NemotronFlashMLP(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int):
super().__init__()
self.config = config
self.act_fn_name = config.mlp_hidden_act
self.act_fn = ACT2FN[self.act_fn_name]
if config.ffn_expand_ratio is not None:
self.ffn_dim = int(config.ffn_expand_ratio * config.hidden_size) // 128 * 128
else:
self.ffn_dim = config.intermediate_size
self.hidden_dim = config.hidden_size
self.layer_idx = layer_idx
if self.act_fn_name == "silu":
self.gate_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.down_proj = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.up_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
def forward(self, x):
if self.act_fn_name == "silu":
output = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
elif self.act_fn_name == "relu2":
output = self.down_proj(self.act_fn(self.up_proj(x)))
else:
raise NotImplementedError(f"No such hidden_act: {self.act_fn_name}")
return output
class NemotronFlashAttentionDecoderLayer(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int,):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.self_attn = JAMBA_ATTENTION_CLASSES[config.attn_implementation](config, layer_idx)
if self.config.intermediate_size > 0:
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.ffn = None
self.pre_ffn_layernorm = None
self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
use_swa=False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]:
position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
residual = hidden_states
if self.input_layernorm is not None:
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value, current_kv = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
use_swa=use_swa,
)
hidden_states = residual + hidden_states
if self.ffn is not None:
residual = hidden_states
if self.pre_ffn_layernorm is not None:
hidden_states = self.pre_ffn_layernorm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
outputs += (current_kv,)
return outputs
class FFNDecoderLayer(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
use_swa=False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
if self.pre_ffn_layernorm is not None:
hidden_states = self.pre_ffn_layernorm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (None,)
if use_cache:
outputs += (None,)
return outputs
class NemotronFlashMambaDecoderLayer(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.mamba = Mamba2(config=config, layer_idx=layer_idx)
self.intermediate_size = config.intermediate_size
if self.intermediate_size > 0:
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.ffn = None
self.pre_ffn_layernorm = None
self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[AttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
use_swa=False,
mamba_inference_params=None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]:
position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
residual = hidden_states
if self.input_layernorm is not None:
hidden_states = self.input_layernorm(hidden_states)
hidden_states, present_key_value = self.mamba(
hidden_states=hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
inference_params=mamba_inference_params,
)
attn_key_value = None
hidden_states = residual + hidden_states
if self.intermediate_size > 0:
residual = hidden_states
if self.pre_ffn_layernorm is not None:
hidden_states = self.pre_ffn_layernorm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
outputs += (attn_key_value,)
return outputs
def _get_past_seqlen(self, past_key_value, seqlen):
if past_key_value is None:
return seqlen
past_seqlen = past_key_value.get_seq_length(self.layer_idx)
if past_seqlen == 0:
return seqlen
return past_seqlen
class NemotronFlashHybridDecoderLayer(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if config.hybrid_decoder_layer == 'mamba':
self.mamba = Mamba2(config=config, layer_idx=layer_idx)
if config.hybrid_decoder_layer == 'deltanet':
if config.layer_types is not None:
deltanet_idx = sum(1 for i in range(layer_idx) if config.layer_types[i] == 'deltanet')
else:
deltanet_idx = layer_idx
self.gla = DeltaNet(hidden_size=config.hidden_size, num_heads=config.num_attention_heads, layer_idx=deltanet_idx, config=self.config)
else:
raise ValueError(f"Not supported: {config.hybrid_decoder_layer}")
self.config = config
if self.config.intermediate_size > 0:
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.ffn = None
self.pre_ffn_layernorm = None
self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[AttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
fla_past_key_values = None,
mamba_inference_params = None,
use_swa=False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
if self.config.hybrid_decoder_layer == 'mamba':
hybrid_op_hidden_states, mamba_present_key_value = self.mamba(
hidden_states=hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
inference_params=mamba_inference_params,
)
else:
hybrid_op_hidden_states, _, fla_past_key_values = self.gla(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=fla_past_key_values,
use_cache=use_cache,
)
self_attn_weights = self_attn_present_key_value = current_kv = None
hidden_states = residual + hybrid_op_hidden_states
if self.ffn is not None:
residual = hidden_states
hidden_states = self.pre_ffn_layernorm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (self_attn_present_key_value,)
outputs += (current_kv,)
return outputs
# Adapted from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel
class NemotronFlashPreTrainedModel(PreTrainedModel):
config_class = NemotronFlashConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["NemotronFlashAttentionDecoderLayer", "NemotronFlashMambaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# Adapted from transformers.models.mistral.modeling_mistral.MistralModel
class NemotronFlashModel(NemotronFlashPreTrainedModel):
def __init__(self, config: NemotronFlashConfig):
super().__init__(config)
config.attn_implementation = config.attn_implementation_new
config._attn_implementation = config.attn_implementation_new
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
decoder_layers = []
layer_type = []
for i in range(config.num_hidden_layers):
if config.layer_types[i] in ['deltanet']:
layer_type.append('m')
config_new = copy.deepcopy(config)
config_new.hybrid_decoder_layer = 'deltanet'
decoder_layer = NemotronFlashHybridDecoderLayer(config_new, layer_idx=i)
elif config.layer_types[i] in ['m', 'm2']:
layer_type.append('m')
decoder_layer = NemotronFlashMambaDecoderLayer(config, layer_idx=i)
elif config.layer_types[i] == 'a':
layer_type.append('a')
decoder_layer = NemotronFlashAttentionDecoderLayer(config, layer_idx=i)
elif config.layer_types[i] == 'f':
layer_type.append('a')
decoder_layer = FFNDecoderLayer(config, layer_idx=i)
else:
raise ValueError(f"Unsupported layer type {config.layer_types[i]}")
decoder_layers.append(decoder_layer)
config.layer_type = layer_type
if config.sliding_window is not None:
self.sliding_window = config.sliding_window
self.global_attn_idx = config.global_attn_idx
else:
self.sliding_window = None
self.global_attn_idx = None
self.layers = nn.ModuleList(decoder_layers)
self._attn_implementation = config.attn_implementation
self.final_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
if self.config.num_memory_tokens > 0:
self.memory_tokens = nn.Parameter(torch.randn(self.config.num_memory_tokens, self.config.hidden_size))
self.gradient_checkpointing = False
self.post_init()
self.has_previous_state = False
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], AttentionDynamicCache]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
fla_past_key_values = None,
mamba_inference_params = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
if self.config.num_memory_tokens > 0 and past_key_values is not None and not self.has_previous_state:
position_ids = position_ids.view(-1, seq_length + self.config.num_memory_tokens).long()
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
ori_b, ori_n = inputs_embeds.shape[0], inputs_embeds.shape[1]
if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state):
mem = repeat(self.memory_tokens, 'n d -> b n d', b = inputs_embeds.shape[0]) # prepend the memory to every segment of m by repeating the memory tokens
inputs_embeds, mem_packed_shape = pack((mem, inputs_embeds), 'b * d')
if position_ids is not None and position_ids.shape[1] != inputs_embeds.shape[1]:
position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0)
if attention_mask is not None and attention_mask.shape[1] < inputs_embeds.shape[1]:
assert attention_mask.shape[1] + self.config.num_memory_tokens == inputs_embeds.shape[1]
attention_mask = torch.cat([torch.ones(inputs_embeds.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1)
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of NemotronFlash. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for i, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
use_swa=self.sliding_window is not None and i not in self.global_attn_idx,
fla_past_key_values=fla_past_key_values,
mamba_inference_params=mamba_inference_params,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if self.final_layernorm is not None:
hidden_states = self.final_layernorm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state):
mem, hidden_states = unpack(hidden_states, mem_packed_shape, 'b * d')
hidden_states = hidden_states[:, :ori_n, :]
if past_key_values is not None and not self.has_previous_state:
self.has_previous_state = True
next_cache = None
if use_cache:
next_cache = next_decoder_cache
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if (fla_past_key_values is None and mamba_inference_params is None) else (past_key_values, fla_past_key_values, mamba_inference_params),
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->NemotronFlash
class NemotronFlashForCausalLM(NemotronFlashPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: NemotronFlashConfig):
super().__init__(config)
self.config = config
self.model = NemotronFlashModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
calc_logits_for_entire_prompt: Optional[bool] = True,
fla_past_key_values = None,
mamba_inference_params = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
calc_logits_for_entire_prompt (`bool`, *optional*):
Whether or not to calculate the logits for the entire prompt, or just the last token. Only last token
logits are needed for generation, and calculating them only for that token can save memory,
which becomes pretty significant for long sequences.
Returns:
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
fla_past_key_values=fla_past_key_values,
mamba_inference_params=mamba_inference_params,
return_dict=return_dict,
)
hidden_states = outputs[0]
if calc_logits_for_entire_prompt:
logits = self.lm_head(hidden_states)
else:
logits = self.lm_head(hidden_states[..., -1:, :])
logits = logits / self.lm_head.weight.norm(p=2, dim=1)
logits = logits.float()
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def get_init_cache(self, max_seqlen, batch_size=1):
past_key_values = AttentionDynamicCache(
self.config, batch_size, self.dtype, device=self.device, layer_type=self.config.layer_type
)
mamba_inference_params = InferenceParams(max_seqlen=max_seqlen, max_batch_size=batch_size)
fla_past_key_values = fla_cache.from_legacy_cache(None)
return past_key_values, fla_past_key_values, mamba_inference_params
def init_cuda_graph_generation(
self,
max_new_tokens=128,
batch_size=1,
device=None,
):
"""
Initialize CUDA graph for generation with proper cache handling and warmup.
This function should be called once before generation to set up the graph.
Args:
max_new_tokens: Maximum number of new tokens to generate
batch_size: Batch size for generation
device: Device to use (defaults to model device)
Returns:
generation_state: Dictionary containing all necessary state for generation
"""
if device is None:
device = next(self.parameters()).device
self.eval()
# Initialize caches
max_seqlen = max_new_tokens + 2048 + self.config.num_memory_tokens # Add buffer for input
past_key_values, fla_past_key_values, mamba_inference_params = self.get_init_cache(
max_seqlen=max_seqlen, batch_size=batch_size
)
# Initialize KV caches for all modules
for module in self.modules():
if hasattr(module, 'init_kv_cache'):
module.init_kv_cache(max_batch_size=batch_size, max_seq_len=max_seqlen)
with torch.no_grad():
# Warmup runs
dummy_input = torch.ones((batch_size, 10), dtype=torch.long, device=device)
for _ in range(10):
self(dummy_input)
# Prepare static tensors for CUDA graph
static_current_input = torch.zeros((batch_size, 1), dtype=torch.long, device=device)
static_position_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=device)
static_logits = torch.zeros((batch_size, self.config.vocab_size), device=device)
# Set up for graph capture
self.model.has_previous_state = True
if mamba_inference_params is not None:
mamba_inference_params.seqlen_offset = 1
# Warmup runs for graph capture
for _ in range(10):
model_kwargs_warmup = {
'input_ids': static_current_input,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'past_key_values': past_key_values,
'use_cache': True,
'position_ids': static_position_ids,
}
warmup_outputs = self(**model_kwargs_warmup)
# Capture CUDA graph
generation_graph = CUDAGraph()
with torch.cuda.graph(generation_graph):
model_kwargs_graph = {
'input_ids': static_current_input,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'past_key_values': past_key_values,
'use_cache': True,
'position_ids': static_position_ids,
}
graph_outputs = self(**model_kwargs_graph)
static_logits.copy_(graph_outputs.logits[:, -1, :])
if fla_past_key_values is not None:
fla_past_key_values.reset()
if mamba_inference_params is not None:
mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size)
for key in mamba_inference_params.key_value_memory_dict:
conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key]
conv_state.zero_()
ssm_state.zero_()
for module in self.modules():
if hasattr(module, 'reset_kv_cache'):
module.reset_kv_cache()
self.model.has_previous_state = False
# Return generation state
generation_state = {
'generation_graph': generation_graph,
'static_current_input': static_current_input,
'static_position_ids': static_position_ids,
'static_logits': static_logits,
'past_key_values': past_key_values,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'max_seqlen': max_seqlen,
'batch_size': batch_size,
'device': device,
}
return generation_state
def generate_with_cuda_graph(
self,
input_ids,
generation_state,
max_new_tokens=128,
temperature=1.0,
top_k=0,
top_p=0.9,
eos_token_id=None,
verbose=False,
profiling=False,
):
"""
Generate text using pre-initialized CUDA graph state.
Args:
input_ids: Input token IDs tensor of shape (batch_size, seq_len)
generation_state: State dictionary returned by init_cuda_graph_generation
max_new_tokens: Maximum number of new tokens to generate
temperature: Sampling temperature (0 for greedy)
top_k: Top-k filtering (0 to disable)
top_p: Top-p filtering (1.0 to disable)
eos_token_id: End-of-sequence token ID
pad_token_id: Padding token ID
verbose: Whether to print generated tokens
profiling: Whether to return timing information
Returns:
generated_ids: Tensor of shape (batch_size, input_len + generated_len)
or decode_latency if profiling=True
"""
self.eval()
batch_size = input_ids.shape[0]
device = input_ids.device
# Extract state
generation_graph = generation_state['generation_graph']
static_current_input = generation_state['static_current_input']
static_position_ids = generation_state['static_position_ids']
static_logits = generation_state['static_logits']
past_key_values = generation_state['past_key_values']
fla_past_key_values = generation_state['fla_past_key_values']
mamba_inference_params = generation_state['mamba_inference_params']
with torch.no_grad():
if mamba_inference_params.seqlen_offset == 0:
if fla_past_key_values is not None:
fla_past_key_values.reset()
if mamba_inference_params is not None:
mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size)
for key in mamba_inference_params.key_value_memory_dict:
conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key]
conv_state.zero_()
ssm_state.zero_()
for module in self.modules():
if hasattr(module, 'reset_kv_cache'):
module.reset_kv_cache()
self.model.has_previous_state = False
# Prefill phase - process input sequence
position_ids = torch.arange(
self.config.num_memory_tokens + input_ids.shape[1], dtype=torch.long, device=device
).unsqueeze(0).expand(batch_size, -1)
else:
# Prefill phase - process input sequence
position_ids = torch.arange(
mamba_inference_params.seqlen_offset, mamba_inference_params.seqlen_offset + input_ids.shape[1], dtype=torch.long, device=device
).unsqueeze(0).expand(batch_size, -1)
current_input = input_ids
model_kwargs = {
'input_ids': current_input,
'past_key_values': past_key_values,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'use_cache': True,
'position_ids': position_ids,
}
if profiling:
torch.cuda.synchronize()
t1 = time.time()
# Forward pass for prefill
outputs = self(**model_kwargs)
if mamba_inference_params is not None:
if mamba_inference_params.seqlen_offset == 0:
mamba_inference_params.seqlen_offset = current_input.shape[1] + self.config.num_memory_tokens
else:
mamba_inference_params.seqlen_offset += current_input.shape[1]
static_position_ids.fill_(position_ids[0, -1])
logits = outputs.logits[:, -1, :] # (batch_size, vocab_size)
generated_tokens = []
# Generation loop using CUDA graph replay
for step in range(max_new_tokens):
# Sample next token using current logits
if temperature == 0:
next_token = torch.argmax(logits, dim=-1, keepdim=True)
else:
next_token = sample_token(logits, temperature=temperature, top_k=top_k, top_p=top_p)
generated_tokens.append(next_token)
# Check for EOS
if not profiling and eos_token_id is not None and (next_token == eos_token_id).all():
if verbose:
print("\nEOS reached")
break
# Update static tensors for graph replay
static_current_input.copy_(next_token)
static_position_ids.add_(1)
# Replay the captured graph
generation_graph.replay()
if mamba_inference_params is not None:
mamba_inference_params.seqlen_offset += 1
logits = static_logits.clone()
generated_ids = torch.cat([input_ids] + generated_tokens, dim=1)
if profiling:
torch.cuda.synchronize()
t2 = time.time()
decode_latency = t2 - t1
return generated_ids, decode_latency
return generated_ids
def generate_with_cache(
self,
input_ids,
max_new_tokens=128,
temperature=1.0,
top_k=0,
top_p=0.9,
eos_token_id=None,
verbose=False,
):
"""
Generate text using the hybrid model with proper cache handling using pre-initialized CUDA graph state.
Args:
input_ids: Input token IDs tensor of shape (batch_size, seq_len)
max_new_tokens: Maximum number of new tokens to generate
temperature: Sampling temperature (0 for greedy)
top_k: Top-k filtering (0 to disable)
top_p: Top-p filtering (1.0 to disable)
eos_token_id: End-of-sequence token ID
verbose: Whether to print generated tokens
Returns:
generated_ids: Tensor of shape (batch_size, input_len + generated_len)
"""
self.eval()
batch_size = input_ids.shape[0]
device = input_ids.device
with torch.no_grad():
max_seqlen = input_ids.shape[1] + max_new_tokens + self.config.num_memory_tokens
past_key_values, fla_past_key_values, mamba_inference_params = self.get_init_cache(max_seqlen=max_seqlen, batch_size=batch_size)
for module in self.model.modules():
if hasattr(module, 'init_kv_cache'):
module.init_kv_cache(max_batch_size=batch_size, max_seq_len=max_seqlen)
# Prefill phase - process input sequence
current_input = input_ids
position_ids = torch.arange(
self.model.config.num_memory_tokens + current_input.shape[1], dtype=torch.long, device=device
).unsqueeze(0).expand(batch_size, -1)
model_kwargs = {
'input_ids': current_input,
'past_key_values': past_key_values,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'use_cache': True,
'position_ids': position_ids,
}
outputs = self(**model_kwargs)
# past_key_values, fla_past_key_values, mamba_inference_params = outputs.past_key_values
mamba_inference_params.seqlen_offset = current_input.shape[1] + self.model.config.num_memory_tokens
logits = outputs.logits[:, -1, :] # (batch_size, vocab_size)
generated_tokens = []
# Generation loop
for step in range(max_new_tokens):
# Sample next token
if temperature == 0:
next_token = torch.argmax(logits, dim=-1, keepdim=True)
else:
next_token = sample_token(logits, temperature=temperature, top_k=top_k, top_p=top_p)
generated_tokens.append(next_token)
# Check for EOS
if eos_token_id is not None and (next_token == eos_token_id).all():
if verbose:
print("\nEOS reached")
break
current_input = next_token # Shape: (batch_size, 1)
# Update position_ids for decoding
if position_ids is not None:
position_ids = torch.full(
(batch_size, 1),
position_ids[0, -1] + 1,
dtype=torch.long,
device=device
)
# Forward pass for next token
model_kwargs = {
'input_ids': current_input,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'past_key_values': past_key_values,
'use_cache': True,
'position_ids': position_ids,
}
outputs = self(**model_kwargs)
mamba_inference_params.seqlen_offset += 1
logits = outputs.logits[:, -1, :]
generated_ids = torch.cat([input_ids] + generated_tokens, dim=1)
return generated_ids
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if self.config.num_memory_tokens > 0:
attention_mask = torch.cat([torch.ones(input_ids.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1)
### Note that KV cache is disable when using model.generate; Please use model.generate_with_cuda_graph or model.generate_with_cache instead.
past_key_values = None
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None:
if input_ids.shape[1] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
inputs_embeds_new = self.model.embed_tokens(input_ids)
model_inputs = {"inputs_embeds": torch.cat([inputs_embeds, inputs_embeds_new], dim=1)}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def sample_token(logits, temperature=1.0, top_k=0, top_p=0.9):
"""
Sample a token from logits with temperature, top-k, and top-p filtering.
Args:
logits: Tensor of shape (batch_size, vocab_size)
temperature: Sampling temperature
top_k: Top-k filtering (0 to disable)
top_p: Top-p filtering (1.0 to disable)
Returns:
next_token: Tensor of shape (batch_size, 1)
"""
if temperature == 0:
return torch.argmax(logits, dim=-1, keepdim=True)
logits = logits / temperature
if top_k > 0:
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits.masked_fill_(indices_to_remove, float('-inf'))
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
logits.masked_fill_(indices_to_remove, float('-inf'))
probs = F.softmax(logits, dim=-1)
return torch.multinomial(probs, num_samples=1)