Upload FastSLMForCausalLM
Browse files- README.md +199 -0
- config.json +112 -0
- configuration_fast_slm.py +246 -0
- delta_net.py +472 -0
- fused_mha_with_cache.py +126 -0
- mamba2.py +464 -0
- model.safetensors +3 -0
- modeling_fast_slm.py +0 -0
- triton_attention.py +2714 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"FastSLMForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"attn_hidden_size": -1,
|
| 7 |
+
"attn_implementation": "flash_attention_2",
|
| 8 |
+
"attn_implementation_new": "flash_attention_2",
|
| 9 |
+
"auto_map": {
|
| 10 |
+
"AutoConfig": "configuration_fast_slm.FastSLMConfig",
|
| 11 |
+
"AutoModelForCausalLM": "modeling_fast_slm.FastSLMForCausalLM"
|
| 12 |
+
},
|
| 13 |
+
"bos_token_id": 1,
|
| 14 |
+
"calc_logits_for_entire_prompt": false,
|
| 15 |
+
"d_conv": 4,
|
| 16 |
+
"dtype": "bfloat16",
|
| 17 |
+
"eos_token_id": 2,
|
| 18 |
+
"ffn_expand_ratio": 3,
|
| 19 |
+
"global_attn_idx": [],
|
| 20 |
+
"hidden_act": "silu",
|
| 21 |
+
"hidden_size": 2048,
|
| 22 |
+
"hybrid_decoder_layer": "mamba",
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"intermediate_size": 0,
|
| 25 |
+
"kq_head_dim": -1,
|
| 26 |
+
"kq_norm": "none",
|
| 27 |
+
"layer_type": [
|
| 28 |
+
"m",
|
| 29 |
+
"a",
|
| 30 |
+
"m",
|
| 31 |
+
"a",
|
| 32 |
+
"a",
|
| 33 |
+
"a",
|
| 34 |
+
"m",
|
| 35 |
+
"a",
|
| 36 |
+
"m",
|
| 37 |
+
"a",
|
| 38 |
+
"m",
|
| 39 |
+
"a",
|
| 40 |
+
"a",
|
| 41 |
+
"a",
|
| 42 |
+
"m",
|
| 43 |
+
"a",
|
| 44 |
+
"m",
|
| 45 |
+
"a",
|
| 46 |
+
"m",
|
| 47 |
+
"a",
|
| 48 |
+
"m",
|
| 49 |
+
"a",
|
| 50 |
+
"m",
|
| 51 |
+
"a"
|
| 52 |
+
],
|
| 53 |
+
"layer_types": [
|
| 54 |
+
"deltanet",
|
| 55 |
+
"f",
|
| 56 |
+
"m2",
|
| 57 |
+
"f",
|
| 58 |
+
"a",
|
| 59 |
+
"f",
|
| 60 |
+
"m2",
|
| 61 |
+
"f",
|
| 62 |
+
"deltanet",
|
| 63 |
+
"f",
|
| 64 |
+
"m2",
|
| 65 |
+
"f",
|
| 66 |
+
"a",
|
| 67 |
+
"f",
|
| 68 |
+
"m2",
|
| 69 |
+
"f",
|
| 70 |
+
"deltanet",
|
| 71 |
+
"f",
|
| 72 |
+
"m2",
|
| 73 |
+
"f",
|
| 74 |
+
"deltanet",
|
| 75 |
+
"f",
|
| 76 |
+
"m2",
|
| 77 |
+
"f"
|
| 78 |
+
],
|
| 79 |
+
"mamba2_headdim": 64,
|
| 80 |
+
"mamba_conv_bias": true,
|
| 81 |
+
"mamba_d_conv": 4,
|
| 82 |
+
"mamba_d_state": 128,
|
| 83 |
+
"mamba_dt_rank": 128,
|
| 84 |
+
"mamba_expand": 2,
|
| 85 |
+
"mamba_inner_layernorms": true,
|
| 86 |
+
"mamba_proj_bias": false,
|
| 87 |
+
"max_position_embeddings": 36000,
|
| 88 |
+
"mlp_hidden_act": "silu",
|
| 89 |
+
"model_type": "jamba",
|
| 90 |
+
"new_seq_length": 2048,
|
| 91 |
+
"num_attention_heads": 16,
|
| 92 |
+
"num_experts": 1,
|
| 93 |
+
"num_experts_per_tok": 1,
|
| 94 |
+
"num_hidden_layers": 24,
|
| 95 |
+
"num_key_value_heads": 4,
|
| 96 |
+
"num_memory_tokens": 256,
|
| 97 |
+
"orig_max_position_embeddings": 4096,
|
| 98 |
+
"output_router_logits": false,
|
| 99 |
+
"pad_token_id": 0,
|
| 100 |
+
"rms_norm_eps": 1e-06,
|
| 101 |
+
"rope": true,
|
| 102 |
+
"rope_theta": 10000.0,
|
| 103 |
+
"rope_type": "ntk",
|
| 104 |
+
"router_aux_loss_coef": 0.001,
|
| 105 |
+
"sliding_window": null,
|
| 106 |
+
"tie_word_embeddings": true,
|
| 107 |
+
"transformers_version": "4.56.2",
|
| 108 |
+
"use_cache": false,
|
| 109 |
+
"use_mamba_kernels": true,
|
| 110 |
+
"v_head_dim": -1,
|
| 111 |
+
"vocab_size": 131072
|
| 112 |
+
}
|
configuration_fast_slm.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" Jamba model configuration"""
|
| 16 |
+
import math
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class FastSLMConfig(PretrainedConfig):
|
| 26 |
+
r"""
|
| 27 |
+
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a
|
| 28 |
+
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 29 |
+
with the defaults will yield a similar configuration to that of the jamba-small architecture.
|
| 30 |
+
|
| 31 |
+
[ai21labs/jamba-small](https://huggingface.co/ai21labs/Jamba-v0.1)
|
| 32 |
+
|
| 33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 34 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
vocab_size (`int`, *optional*, defaults to 65536):
|
| 39 |
+
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the
|
| 40 |
+
`inputs_ids` passed when calling [`JambaModel`]
|
| 41 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 42 |
+
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
| 43 |
+
model has a output word embedding layer.
|
| 44 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 45 |
+
Dimension of the hidden representations.
|
| 46 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
| 47 |
+
Dimension of the MLP representations.
|
| 48 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 49 |
+
Number of hidden layers in the Transformer encoder.
|
| 50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 52 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
| 53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 55 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
| 59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 60 |
+
The non-linear activation function (function or string) in the decoder.
|
| 61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 64 |
+
The epsilon used by the rms normalization layers.
|
| 65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 67 |
+
relevant if `config.is_decoder=True`.
|
| 68 |
+
calc_logits_for_entire_prompt (`bool`, *optional*, defaults to `False`):
|
| 69 |
+
Whether or not to calculate logits for entire prompt during generation. If `False`, only the logits of the
|
| 70 |
+
last prompt token will be calculated, which are the only logits needed for generation. For long sequences,
|
| 71 |
+
the logits for the entire sequence may use a lot of memory so setting `calc_logits_for_entire_prompt=False`
|
| 72 |
+
will reduce memory footprint significantly.
|
| 73 |
+
Note: some generation features may not be available if this is set to `False`.
|
| 74 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
| 75 |
+
Whether or not the router logits should be returned by the model. Enabling this will also
|
| 76 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
| 77 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
| 78 |
+
The aux loss factor for the total loss.
|
| 79 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
| 80 |
+
The id of the padding token.
|
| 81 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 82 |
+
The id of the "beginning-of-sequence" token.
|
| 83 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 84 |
+
The id of the "end-of-sequence" token.
|
| 85 |
+
sliding_window (`int`, *optional*):
|
| 86 |
+
Sliding window attention window size. If not specified, will default to `None`.
|
| 87 |
+
n_ctx (`int`, *optional*, defaults to 262144):
|
| 88 |
+
This value doesn't have any real effect. The maximum sequence length that this model is intended to be
|
| 89 |
+
used with. It can be used with longer sequences, but performance may degrade.
|
| 90 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 91 |
+
The dropout ratio for the attention probabilities.
|
| 92 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
| 93 |
+
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
| 94 |
+
parameter
|
| 95 |
+
num_experts (`int`, *optional*, defaults to 16):
|
| 96 |
+
Number of experts per Sparse MLP layer.
|
| 97 |
+
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
|
| 98 |
+
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
|
| 99 |
+
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if
|
| 100 |
+
`True` and kernels are not available
|
| 101 |
+
mamba_d_state (`int`, *optional*, defaults to 16):
|
| 102 |
+
The dimension the mamba state space latents
|
| 103 |
+
mamba_d_conv (`int`, *optional*, defaults to 4):
|
| 104 |
+
The size of the mamba convolution kernel
|
| 105 |
+
mamba_expand (`int`, *optional*, defaults to 2):
|
| 106 |
+
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
|
| 107 |
+
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
| 108 |
+
Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
| 109 |
+
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
|
| 110 |
+
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
|
| 111 |
+
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
|
| 112 |
+
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
|
| 113 |
+
mamba_inner_layernorms (`bool`, *optional*, defaults to `True`):
|
| 114 |
+
Flag indicating whether or not to apply layernorms to internal mamba activations
|
| 115 |
+
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
model_type = "jamba"
|
| 119 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 120 |
+
|
| 121 |
+
def __init__(
|
| 122 |
+
self,
|
| 123 |
+
vocab_size=65536,
|
| 124 |
+
tie_word_embeddings=False,
|
| 125 |
+
hidden_size=4096,
|
| 126 |
+
intermediate_size=14336,
|
| 127 |
+
num_hidden_layers=32,
|
| 128 |
+
num_attention_heads=32,
|
| 129 |
+
num_key_value_heads=8,
|
| 130 |
+
hidden_act="silu",
|
| 131 |
+
initializer_range=0.02,
|
| 132 |
+
rms_norm_eps=1e-6,
|
| 133 |
+
use_cache=True,
|
| 134 |
+
calc_logits_for_entire_prompt=False,
|
| 135 |
+
output_router_logits=False,
|
| 136 |
+
router_aux_loss_coef=0.001,
|
| 137 |
+
pad_token_id=0,
|
| 138 |
+
bos_token_id=1,
|
| 139 |
+
eos_token_id=2,
|
| 140 |
+
sliding_window=None,
|
| 141 |
+
max_position_embeddings=262144,
|
| 142 |
+
orig_max_position_embeddings=None,
|
| 143 |
+
attention_dropout=0.0,
|
| 144 |
+
num_experts_per_tok=2,
|
| 145 |
+
num_experts=16,
|
| 146 |
+
use_mamba_kernels=True,
|
| 147 |
+
mamba_d_state=16,
|
| 148 |
+
mamba_d_conv=4,
|
| 149 |
+
mamba_expand=2,
|
| 150 |
+
mamba_dt_rank="auto",
|
| 151 |
+
mamba_conv_bias=True,
|
| 152 |
+
mamba_proj_bias=False,
|
| 153 |
+
mamba_inner_layernorms=True,
|
| 154 |
+
|
| 155 |
+
hybrid_decoder_layer='mamba',
|
| 156 |
+
|
| 157 |
+
global_attn_idx=None,
|
| 158 |
+
|
| 159 |
+
attn_implementation_new='flash_attention_2',
|
| 160 |
+
|
| 161 |
+
mamba2_headdim=64,
|
| 162 |
+
|
| 163 |
+
rope_type=None,
|
| 164 |
+
|
| 165 |
+
layer_types=None,
|
| 166 |
+
|
| 167 |
+
ffn_expand_ratio=None,
|
| 168 |
+
|
| 169 |
+
d_conv=4,
|
| 170 |
+
|
| 171 |
+
**kwargs,
|
| 172 |
+
):
|
| 173 |
+
self.vocab_size = vocab_size
|
| 174 |
+
self.tie_word_embeddings = tie_word_embeddings
|
| 175 |
+
self.hidden_size = hidden_size
|
| 176 |
+
self.intermediate_size = intermediate_size
|
| 177 |
+
self.num_hidden_layers = num_hidden_layers
|
| 178 |
+
self.num_attention_heads = num_attention_heads
|
| 179 |
+
self.sliding_window = sliding_window
|
| 180 |
+
self.max_position_embeddings = max_position_embeddings
|
| 181 |
+
self.orig_max_position_embeddings = orig_max_position_embeddings
|
| 182 |
+
self.attention_dropout = attention_dropout
|
| 183 |
+
|
| 184 |
+
# for backward compatibility
|
| 185 |
+
if num_key_value_heads is None:
|
| 186 |
+
num_key_value_heads = num_attention_heads
|
| 187 |
+
|
| 188 |
+
self.num_key_value_heads = num_key_value_heads
|
| 189 |
+
self.hidden_act = hidden_act
|
| 190 |
+
self.initializer_range = initializer_range
|
| 191 |
+
self.rms_norm_eps = rms_norm_eps
|
| 192 |
+
|
| 193 |
+
self.use_cache = use_cache
|
| 194 |
+
self.calc_logits_for_entire_prompt = calc_logits_for_entire_prompt
|
| 195 |
+
self.output_router_logits = output_router_logits
|
| 196 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
| 197 |
+
|
| 198 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 199 |
+
self.num_experts = num_experts
|
| 200 |
+
|
| 201 |
+
self.use_mamba_kernels = use_mamba_kernels
|
| 202 |
+
self.mamba_d_state = mamba_d_state
|
| 203 |
+
self.mamba_d_conv = mamba_d_conv
|
| 204 |
+
self.mamba_expand = mamba_expand
|
| 205 |
+
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
|
| 206 |
+
self.mamba_conv_bias = mamba_conv_bias
|
| 207 |
+
self.mamba_proj_bias = mamba_proj_bias
|
| 208 |
+
self.mamba_inner_layernorms = mamba_inner_layernorms
|
| 209 |
+
|
| 210 |
+
# added by Xin
|
| 211 |
+
self.kq_norm = kwargs.pop("kq_norm", None)
|
| 212 |
+
self.rope = kwargs.pop("rope", False)
|
| 213 |
+
self.rope_theta = kwargs.pop("rope_theta", 10000.0)
|
| 214 |
+
self.num_memory_tokens = kwargs.pop("num_memory_tokens", 0)
|
| 215 |
+
self.attn_hidden_size = kwargs.pop("attn_hidden_size", -1)
|
| 216 |
+
self.kq_head_dim = kwargs.pop("kq_head_dim", -1)
|
| 217 |
+
self.v_head_dim = kwargs.pop("v_head_dim", -1)
|
| 218 |
+
|
| 219 |
+
#! adhoc change
|
| 220 |
+
self.new_seq_length = 2048
|
| 221 |
+
|
| 222 |
+
self.hybrid_decoder_layer = hybrid_decoder_layer
|
| 223 |
+
|
| 224 |
+
self.global_attn_idx = global_attn_idx
|
| 225 |
+
|
| 226 |
+
self.attn_implementation_new = attn_implementation_new
|
| 227 |
+
|
| 228 |
+
self.mamba2_headdim = mamba2_headdim
|
| 229 |
+
|
| 230 |
+
self.rope_type = rope_type
|
| 231 |
+
|
| 232 |
+
self.layer_types = layer_types
|
| 233 |
+
|
| 234 |
+
self.ffn_expand_ratio = ffn_expand_ratio
|
| 235 |
+
|
| 236 |
+
self.d_conv = d_conv
|
| 237 |
+
|
| 238 |
+
self.mlp_hidden_act = kwargs.pop("mlp_hidden_act", "silu")
|
| 239 |
+
|
| 240 |
+
super().__init__(
|
| 241 |
+
pad_token_id=pad_token_id,
|
| 242 |
+
bos_token_id=bos_token_id,
|
| 243 |
+
eos_token_id=eos_token_id,
|
| 244 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 245 |
+
**kwargs,
|
| 246 |
+
)
|
delta_net.py
ADDED
|
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from torch.nn import functional as F
|
| 12 |
+
|
| 13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
| 14 |
+
from fla.ops.delta_rule import chunk_delta_rule, fused_recurrent_delta_rule
|
| 15 |
+
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import transformers
|
| 20 |
+
|
| 21 |
+
if TYPE_CHECKING:
|
| 22 |
+
from transformers.processing_utils import Unpack
|
| 23 |
+
|
| 24 |
+
from fla.models.utils import Cache
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def elu_p1(x):
|
| 28 |
+
return (F.elu(x, 1., False) + 1.).to(x)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def sum_norm(x):
|
| 32 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class DeltaNet(nn.Module):
|
| 36 |
+
r"""
|
| 37 |
+
The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484). # noqa:
|
| 38 |
+
DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
mode (str, Optional):
|
| 42 |
+
Which DeltaNet kernel to use.
|
| 43 |
+
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
|
| 44 |
+
Default: `chunk`.
|
| 45 |
+
hidden_size (int, Optional):
|
| 46 |
+
The hidden size of the input. Default: 1024.
|
| 47 |
+
expand_k (float, Optional):
|
| 48 |
+
The expansion ratio for the key dim. Default: 1.0.
|
| 49 |
+
expand_v (float, Optional):
|
| 50 |
+
The expansion ratio for the value dim. Default: 1.0.
|
| 51 |
+
num_heads (int, Optional):
|
| 52 |
+
The number of heads. Default: 4.
|
| 53 |
+
use_beta (bool, Optional):
|
| 54 |
+
Whether to use beta. Default: `True`.
|
| 55 |
+
use_gate (bool, Optional):
|
| 56 |
+
Whether to use output gate. Default: `False`.
|
| 57 |
+
use_short_conv (bool, Optional):
|
| 58 |
+
Whether to use short convolutions. Default: `True`.
|
| 59 |
+
conv_size (int, Optional):
|
| 60 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
| 61 |
+
conv_bias (bool, Optional):
|
| 62 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
| 63 |
+
allow_neg_eigval (bool, Optional):
|
| 64 |
+
Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2.
|
| 65 |
+
See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537)
|
| 66 |
+
layer_idx (int, Optional):
|
| 67 |
+
The index of the layer. Default: None.
|
| 68 |
+
norm_eps (float, Optional):
|
| 69 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
| 70 |
+
qk_activation (str, Optional):
|
| 71 |
+
The activation function for the query and key. Default: `silu`.
|
| 72 |
+
qk_norm (str, Optional):
|
| 73 |
+
The normalization method for the query and key. Default: `l2`.
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
def __init__(
|
| 77 |
+
self,
|
| 78 |
+
mode: str = 'chunk',
|
| 79 |
+
d_model: int = None,
|
| 80 |
+
hidden_size: int = 1024,
|
| 81 |
+
expand_k: float = 1.0,
|
| 82 |
+
expand_v: float = 1.0,
|
| 83 |
+
num_heads: int = 4,
|
| 84 |
+
use_beta: bool = True,
|
| 85 |
+
use_gate: bool = False,
|
| 86 |
+
use_short_conv: bool = True,
|
| 87 |
+
conv_size: int = 4,
|
| 88 |
+
conv_bias: bool = False,
|
| 89 |
+
allow_neg_eigval: bool = False,
|
| 90 |
+
layer_idx: int = None,
|
| 91 |
+
qk_activation: str = 'silu',
|
| 92 |
+
qk_norm: str = 'l2',
|
| 93 |
+
norm_eps: float = 1e-5,
|
| 94 |
+
config = None,
|
| 95 |
+
**kwargs
|
| 96 |
+
) -> DeltaNet:
|
| 97 |
+
super().__init__()
|
| 98 |
+
|
| 99 |
+
self.mode = mode
|
| 100 |
+
self.qk_activation = qk_activation
|
| 101 |
+
self.qk_norm = qk_norm
|
| 102 |
+
|
| 103 |
+
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
|
| 104 |
+
assert self.qk_norm in ['l2', 'sum']
|
| 105 |
+
|
| 106 |
+
if d_model is not None:
|
| 107 |
+
hidden_size = d_model
|
| 108 |
+
self.hidden_size = hidden_size
|
| 109 |
+
self.expand_k = expand_k
|
| 110 |
+
self.expand_v = expand_v
|
| 111 |
+
self.num_heads = num_heads
|
| 112 |
+
self.use_gate = use_gate
|
| 113 |
+
self.use_short_conv = use_short_conv
|
| 114 |
+
self.conv_size = conv_size
|
| 115 |
+
self.conv_bias = conv_bias
|
| 116 |
+
self.allow_neg_eigval = allow_neg_eigval
|
| 117 |
+
|
| 118 |
+
self.key_dim = int(hidden_size * expand_k)
|
| 119 |
+
self.value_dim = int(hidden_size * expand_v)
|
| 120 |
+
self.head_k_dim = self.key_dim // num_heads
|
| 121 |
+
self.head_v_dim = self.value_dim // num_heads
|
| 122 |
+
self.layer_idx = layer_idx
|
| 123 |
+
|
| 124 |
+
self.silu = nn.SiLU()
|
| 125 |
+
if mode == 'fused_chunk':
|
| 126 |
+
raise NotImplementedError("fused_chunk_delta_rule is now deprecated. Please use `chunk_delta_rule` instead.")
|
| 127 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
| 128 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
| 129 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
| 130 |
+
|
| 131 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 132 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 133 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 134 |
+
|
| 135 |
+
self.use_beta = use_beta
|
| 136 |
+
if self.use_beta:
|
| 137 |
+
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
| 138 |
+
if use_short_conv:
|
| 139 |
+
self.conv_size = conv_size
|
| 140 |
+
self.q_conv1d = ShortConvolution(
|
| 141 |
+
hidden_size=self.key_dim,
|
| 142 |
+
kernel_size=conv_size,
|
| 143 |
+
activation='silu' if qk_activation == 'silu' else None
|
| 144 |
+
)
|
| 145 |
+
self.k_conv1d = ShortConvolution(
|
| 146 |
+
hidden_size=self.key_dim,
|
| 147 |
+
kernel_size=conv_size,
|
| 148 |
+
activation='silu' if qk_activation == 'silu' else None
|
| 149 |
+
)
|
| 150 |
+
self.v_conv1d = ShortConvolution(
|
| 151 |
+
hidden_size=self.value_dim,
|
| 152 |
+
kernel_size=conv_size,
|
| 153 |
+
activation='silu'
|
| 154 |
+
)
|
| 155 |
+
else:
|
| 156 |
+
raise UserWarning(
|
| 157 |
+
"ShortConvolution is crucial to the performance. "
|
| 158 |
+
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
|
| 159 |
+
)
|
| 160 |
+
if use_gate:
|
| 161 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 162 |
+
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
|
| 163 |
+
else:
|
| 164 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
| 165 |
+
|
| 166 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
| 167 |
+
|
| 168 |
+
self.apply(self._initialize_weights)
|
| 169 |
+
|
| 170 |
+
def _initialize_weights(self, module: nn.Module):
|
| 171 |
+
if getattr(module, "_is_hf_initialized", False):
|
| 172 |
+
return
|
| 173 |
+
if isinstance(module, nn.Linear):
|
| 174 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
| 175 |
+
if module.bias is not None:
|
| 176 |
+
nn.init.zeros_(module.bias)
|
| 177 |
+
module._is_hf_initialized = True
|
| 178 |
+
|
| 179 |
+
def forward(
|
| 180 |
+
self,
|
| 181 |
+
hidden_states: torch.Tensor,
|
| 182 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 183 |
+
past_key_values: Optional[Cache] = None,
|
| 184 |
+
use_cache: Optional[bool] = False,
|
| 185 |
+
output_attentions: Optional[bool] = False,
|
| 186 |
+
**kwargs: Unpack[Dict]
|
| 187 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 188 |
+
if attention_mask is not None:
|
| 189 |
+
assert len(attention_mask.shape) == 2, (
|
| 190 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 191 |
+
"for padding purposes (0 indicating padding). "
|
| 192 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# change to inference mode.
|
| 196 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 197 |
+
|
| 198 |
+
last_state = None
|
| 199 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 200 |
+
last_state = past_key_values[self.layer_idx]
|
| 201 |
+
|
| 202 |
+
if self.use_short_conv:
|
| 203 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 204 |
+
if last_state is not None:
|
| 205 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
| 206 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 207 |
+
position_ids = kwargs.get('position_ids', None)
|
| 208 |
+
|
| 209 |
+
q = self.q_proj(hidden_states)
|
| 210 |
+
|
| 211 |
+
q, conv_state_q = self.q_conv1d(x=q,
|
| 212 |
+
mask=conv_mask,
|
| 213 |
+
cache=conv_state_q,
|
| 214 |
+
output_final_state=use_cache,
|
| 215 |
+
seq_idx=position_ids)
|
| 216 |
+
|
| 217 |
+
k = self.k_proj(hidden_states)
|
| 218 |
+
|
| 219 |
+
k, conv_state_k = self.k_conv1d(x=k,
|
| 220 |
+
mask=conv_mask,
|
| 221 |
+
cache=conv_state_k,
|
| 222 |
+
output_final_state=use_cache,
|
| 223 |
+
seq_idx=position_ids)
|
| 224 |
+
|
| 225 |
+
v = self.v_proj(hidden_states)
|
| 226 |
+
|
| 227 |
+
v, conv_state_v = self.v_conv1d(x=v,
|
| 228 |
+
mask=conv_mask,
|
| 229 |
+
cache=conv_state_v,
|
| 230 |
+
output_final_state=use_cache,
|
| 231 |
+
seq_idx=position_ids)
|
| 232 |
+
else:
|
| 233 |
+
q = self.q_proj(hidden_states)
|
| 234 |
+
k = self.k_proj(hidden_states)
|
| 235 |
+
v = self.v_proj(hidden_states)
|
| 236 |
+
|
| 237 |
+
if self.qk_activation == 'silu':
|
| 238 |
+
q, k = self.silu(q), self.silu(k)
|
| 239 |
+
|
| 240 |
+
v = self.silu(v)
|
| 241 |
+
|
| 242 |
+
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
|
| 243 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
|
| 244 |
+
if self.qk_activation != 'silu':
|
| 245 |
+
if self.qk_activation == 'relu':
|
| 246 |
+
q, k = q.relu(), k.relu()
|
| 247 |
+
elif self.qk_activation == 'elu':
|
| 248 |
+
q, k = elu_p1(q), elu_p1(k)
|
| 249 |
+
elif self.qk_activation == 'identity':
|
| 250 |
+
pass
|
| 251 |
+
else:
|
| 252 |
+
raise NotImplementedError
|
| 253 |
+
|
| 254 |
+
if self.qk_norm == 'sum':
|
| 255 |
+
q = sum_norm(q).to(q)
|
| 256 |
+
k = sum_norm(k).to(k)
|
| 257 |
+
|
| 258 |
+
if self.use_beta:
|
| 259 |
+
beta = self.b_proj(hidden_states)
|
| 260 |
+
beta = beta.sigmoid()
|
| 261 |
+
else:
|
| 262 |
+
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
|
| 263 |
+
|
| 264 |
+
if self.allow_neg_eigval:
|
| 265 |
+
beta = beta * 2.
|
| 266 |
+
|
| 267 |
+
# dealing with padding
|
| 268 |
+
if attention_mask is not None:
|
| 269 |
+
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
|
| 270 |
+
|
| 271 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 272 |
+
|
| 273 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 274 |
+
if mode == 'fused_recurrent':
|
| 275 |
+
o, recurrent_state = fused_recurrent_delta_rule(
|
| 276 |
+
q=q,
|
| 277 |
+
k=k,
|
| 278 |
+
v=v,
|
| 279 |
+
beta=beta,
|
| 280 |
+
initial_state=recurrent_state,
|
| 281 |
+
output_final_state=use_cache,
|
| 282 |
+
cu_seqlens=cu_seqlens,
|
| 283 |
+
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
|
| 284 |
+
)
|
| 285 |
+
elif mode == 'chunk':
|
| 286 |
+
o, recurrent_state = chunk_delta_rule(
|
| 287 |
+
q=q,
|
| 288 |
+
k=k,
|
| 289 |
+
v=v,
|
| 290 |
+
beta=beta,
|
| 291 |
+
initial_state=recurrent_state,
|
| 292 |
+
output_final_state=use_cache,
|
| 293 |
+
cu_seqlens=cu_seqlens,
|
| 294 |
+
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
|
| 295 |
+
)
|
| 296 |
+
else:
|
| 297 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
| 298 |
+
|
| 299 |
+
if past_key_values is not None:
|
| 300 |
+
past_key_values.update(
|
| 301 |
+
recurrent_state=recurrent_state,
|
| 302 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
| 303 |
+
layer_idx=self.layer_idx,
|
| 304 |
+
offset=q.shape[1]
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
if self.use_gate:
|
| 308 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
| 309 |
+
o = self.o_norm(o, g)
|
| 310 |
+
else:
|
| 311 |
+
o = self.o_norm(o)
|
| 312 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
| 313 |
+
o = self.o_proj(o)
|
| 314 |
+
|
| 315 |
+
return o, None, past_key_values
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class Cache(transformers.cache_utils.Cache):
|
| 319 |
+
"""
|
| 320 |
+
A cache used for storing hidden states produced by flash linear attention models.
|
| 321 |
+
|
| 322 |
+
It stores the states of each layer as the tensor of shape `[batch_size, key_dim, value_dim]`.
|
| 323 |
+
"""
|
| 324 |
+
|
| 325 |
+
is_compileable = True
|
| 326 |
+
|
| 327 |
+
def __init__(
|
| 328 |
+
self,
|
| 329 |
+
seen_tokens: int = 0
|
| 330 |
+
) -> Cache:
|
| 331 |
+
super().__init__(layers=[0])
|
| 332 |
+
|
| 333 |
+
self.states: List[Dict[str, Any]] = []
|
| 334 |
+
|
| 335 |
+
self._seen_tokens = seen_tokens # Used in `generate` to keep tally of how many tokens the cache has seen
|
| 336 |
+
|
| 337 |
+
def __getitem__(self, layer_idx: int) -> Dict[str, Any]:
|
| 338 |
+
if layer_idx < len(self):
|
| 339 |
+
return self.states[layer_idx]
|
| 340 |
+
else:
|
| 341 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
| 342 |
+
|
| 343 |
+
def __iter__(self):
|
| 344 |
+
for state in self.states:
|
| 345 |
+
yield state
|
| 346 |
+
|
| 347 |
+
def __len__(self):
|
| 348 |
+
return len(self.states)
|
| 349 |
+
|
| 350 |
+
def reset(self):
|
| 351 |
+
for state in self.states:
|
| 352 |
+
for key in state:
|
| 353 |
+
if state[key] is not None:
|
| 354 |
+
if type(state[key]) == tuple:
|
| 355 |
+
for subkey in state[key]:
|
| 356 |
+
subkey.zero_()
|
| 357 |
+
else:
|
| 358 |
+
state[key].zero_()
|
| 359 |
+
self._seen_tokens = 0
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def update(
|
| 363 |
+
self,
|
| 364 |
+
recurrent_state: Optional[Tuple[torch.Tensor]] = None,
|
| 365 |
+
attn_state: Optional[Tuple[torch.Tensor]] = None,
|
| 366 |
+
conv_state: Optional[Tuple[torch.Tensor]] = None,
|
| 367 |
+
ffn_state: Optional[Tuple[torch.Tensor]] = None,
|
| 368 |
+
layer_idx: int = 0,
|
| 369 |
+
offset: Optional[int] = 1,
|
| 370 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
| 371 |
+
) -> Dict[str, Any]:
|
| 372 |
+
"""
|
| 373 |
+
Args:
|
| 374 |
+
recurrent_state (`torch.Tensor`):
|
| 375 |
+
The new recurrent state to cache.
|
| 376 |
+
attn_state (`Tuple[torch.Tensor]`):
|
| 377 |
+
The new attention key/value states to cache.
|
| 378 |
+
conv_state (`Tuple[torch.Tensor]`):
|
| 379 |
+
The new convolution state to cache.
|
| 380 |
+
ffn_state (`Tuple[torch.Tensor]`):
|
| 381 |
+
The new feed-forward state to cache.
|
| 382 |
+
layer_idx (`int`, defaults to 0):
|
| 383 |
+
The index of the layer to cache the states for.
|
| 384 |
+
offset (`int`, defaults to 1):
|
| 385 |
+
The number of new tokens being processed.
|
| 386 |
+
cache_kwargs (`Dict[str, Any]`):
|
| 387 |
+
Additional arguments for the cache subclass.
|
| 388 |
+
|
| 389 |
+
Return:
|
| 390 |
+
Dictionary of the updated state.
|
| 391 |
+
"""
|
| 392 |
+
|
| 393 |
+
if cache_kwargs is None:
|
| 394 |
+
cache_kwargs = {}
|
| 395 |
+
if attn_state is not None:
|
| 396 |
+
input_size = attn_state[0].shape[1]
|
| 397 |
+
window_size = cache_kwargs.get('window_size', None)
|
| 398 |
+
if not (isinstance(attn_state, Tuple) or isinstance(attn_state, List)):
|
| 399 |
+
raise ValueError("`attn_state` must be a tuple of tensors for key/value states")
|
| 400 |
+
if len(self.states) <= layer_idx:
|
| 401 |
+
# update the number of seen tokens
|
| 402 |
+
if layer_idx == 0:
|
| 403 |
+
self._seen_tokens += offset
|
| 404 |
+
if attn_state is not None:
|
| 405 |
+
if window_size is not None and input_size > window_size:
|
| 406 |
+
attn_state = [state[:, -window_size:].contiguous() for state in attn_state]
|
| 407 |
+
state = dict(
|
| 408 |
+
recurrent_state=recurrent_state,
|
| 409 |
+
attn_state=attn_state,
|
| 410 |
+
conv_state=conv_state,
|
| 411 |
+
ffn_state=ffn_state
|
| 412 |
+
)
|
| 413 |
+
self.states.append(state)
|
| 414 |
+
else:
|
| 415 |
+
# update the number of seen tokens
|
| 416 |
+
if layer_idx == len(self.states) - 1:
|
| 417 |
+
self._seen_tokens += offset
|
| 418 |
+
state = self.states[layer_idx]
|
| 419 |
+
if recurrent_state is not None:
|
| 420 |
+
state['recurrent_state'].copy_(recurrent_state)
|
| 421 |
+
if attn_state is not None:
|
| 422 |
+
if window_size is not None and state['attn_state'][0].shape[1] == window_size:
|
| 423 |
+
for i, (old_state, new_state) in enumerate(zip(state['attn_state'], attn_state)):
|
| 424 |
+
# DO NOT allocate new memory if the cache is full
|
| 425 |
+
# roll the key/value states to the left by `input_size`
|
| 426 |
+
old_state = old_state.roll(-input_size, 1)
|
| 427 |
+
# replace the last `input_size` tokens with the new key/value states
|
| 428 |
+
old_state[:, -input_size:] = new_state
|
| 429 |
+
state['attn_state'][i].copy_(old_state)
|
| 430 |
+
else:
|
| 431 |
+
attn_state = [
|
| 432 |
+
torch.cat([old_state, new_state], 1)
|
| 433 |
+
for old_state, new_state in zip(state['attn_state'], attn_state)
|
| 434 |
+
]
|
| 435 |
+
state['attn_state'].copy_(attn_state)
|
| 436 |
+
if conv_state is not None:
|
| 437 |
+
conv_state_q, conv_state_k, conv_state_v = state['conv_state']
|
| 438 |
+
conv_state_q.copy_(conv_state[0])
|
| 439 |
+
conv_state_k.copy_(conv_state[1])
|
| 440 |
+
conv_state_v.copy_(conv_state[2])
|
| 441 |
+
if ffn_state is not None:
|
| 442 |
+
state['ffn_state'].copy_(ffn_state)
|
| 443 |
+
|
| 444 |
+
return state
|
| 445 |
+
|
| 446 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
| 447 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
| 448 |
+
if len(self.states) <= layer_idx:
|
| 449 |
+
return 0
|
| 450 |
+
return self._seen_tokens
|
| 451 |
+
|
| 452 |
+
def get_max_length(self) -> Optional[int]:
|
| 453 |
+
"""Returns the maximum sequence length of the cached states. Cache does not have a maximum length."""
|
| 454 |
+
return None
|
| 455 |
+
|
| 456 |
+
def to_legacy_cache(self) -> Tuple:
|
| 457 |
+
return tuple(self.states)
|
| 458 |
+
|
| 459 |
+
@classmethod
|
| 460 |
+
@torch.compiler.disable
|
| 461 |
+
def from_legacy_cache(
|
| 462 |
+
cls,
|
| 463 |
+
past_key_values: Optional[Tuple] = None,
|
| 464 |
+
seen_tokens: int = 0
|
| 465 |
+
) -> Cache:
|
| 466 |
+
"""Converts a cache in the legacy cache format into an equivalent `Cache`."""
|
| 467 |
+
|
| 468 |
+
cache = cls(seen_tokens)
|
| 469 |
+
if isinstance(past_key_values, list):
|
| 470 |
+
for layer_idx in range(len(past_key_values)):
|
| 471 |
+
cache.states.append(past_key_values[layer_idx])
|
| 472 |
+
return cache
|
fused_mha_with_cache.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Optional, Tuple
|
| 3 |
+
|
| 4 |
+
from .triton_attention import (
|
| 5 |
+
fused_mha_with_paged_cache, fused_mha_with_cache
|
| 6 |
+
)
|
| 7 |
+
|
| 8 |
+
dtype_int = torch.int32
|
| 9 |
+
|
| 10 |
+
def fused_mha_interface(
|
| 11 |
+
query_states: torch.Tensor, # [batch, q_len, heads, head_dim]
|
| 12 |
+
key_states: torch.Tensor, # [batch, kv_len, heads, head_dim]
|
| 13 |
+
value_states: torch.Tensor, # [batch, kv_len, heads, head_dim]
|
| 14 |
+
k_cache: torch.Tensor, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD] or [num_pages, page_size, n, d] for paged attn
|
| 15 |
+
v_cache: torch.Tensor, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD]
|
| 16 |
+
position_ids: torch.Tensor=None,
|
| 17 |
+
page_table: torch.Tensor=None, # [b, max_num_pages_per_seq] # loc of the block page in the cache.
|
| 18 |
+
max_seq_len = None,
|
| 19 |
+
) -> torch.Tensor:
|
| 20 |
+
"""
|
| 21 |
+
Replacement for _flash_attention_forward(...) that uses
|
| 22 |
+
Triton’s fused_mha_with_paged_cache under the hood.
|
| 23 |
+
Returns: [batch, q_len, heads*head_dim]
|
| 24 |
+
"""
|
| 25 |
+
# unpack shapes
|
| 26 |
+
b, ql, n_heads, head_dim = query_states.shape
|
| 27 |
+
_, kvl, n_kv_heads, _ = key_states.shape
|
| 28 |
+
|
| 29 |
+
q = query_states.reshape(b, ql, n_heads * head_dim)
|
| 30 |
+
k = key_states.reshape(b, kvl, n_kv_heads * head_dim)
|
| 31 |
+
v = value_states.reshape(b, kvl, n_kv_heads * head_dim)
|
| 32 |
+
|
| 33 |
+
if position_ids is not None:
|
| 34 |
+
if ql == 1: # Generate phase - single token
|
| 35 |
+
input_pos = position_ids[:, -1] # Use the last position for each sequence
|
| 36 |
+
else: # Context phase - multiple tokens
|
| 37 |
+
input_pos = position_ids[:, 0] # Use the starting position for each sequence
|
| 38 |
+
else:
|
| 39 |
+
# Fallback: assume starting from 0 for all sequences
|
| 40 |
+
input_pos = torch.zeros(b, device=q.device, dtype=torch.int32)
|
| 41 |
+
|
| 42 |
+
freqs_cis = None
|
| 43 |
+
|
| 44 |
+
if page_table is None:
|
| 45 |
+
y = torch.ops.attention.fused_mha_with_cache(
|
| 46 |
+
q, k, v,
|
| 47 |
+
input_pos,
|
| 48 |
+
k_cache, v_cache,
|
| 49 |
+
freqs_cis,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
else:
|
| 54 |
+
batch_size = b
|
| 55 |
+
|
| 56 |
+
# cache_loc: identity mapping [0, 1, ..., b-1]
|
| 57 |
+
cache_loc = torch.arange(batch_size, device=q.device, dtype=dtype_int)
|
| 58 |
+
|
| 59 |
+
# input_positions: assume pure context (all start from 0)
|
| 60 |
+
input_positions = torch.zeros(batch_size, device=q.device, dtype=dtype_int)
|
| 61 |
+
|
| 62 |
+
# seq_len: each sequence length is kvl
|
| 63 |
+
seq_len = torch.full((batch_size,), kvl, device=q.device, dtype=dtype_int)
|
| 64 |
+
|
| 65 |
+
# seq_start: flattened starting index for each sequence
|
| 66 |
+
seq_start = (seq_len.cumsum(0) - seq_len).to(dtype=dtype_int)
|
| 67 |
+
|
| 68 |
+
assert max_seq_len is not None, "max_seq_len must be provided when using paged attention."
|
| 69 |
+
|
| 70 |
+
y = torch.ops.attention.fused_mha_with_paged_cache(
|
| 71 |
+
q, k, v,
|
| 72 |
+
input_positions, cache_loc,
|
| 73 |
+
seq_len, seq_start,
|
| 74 |
+
page_table, max_seq_len,
|
| 75 |
+
k_cache, v_cache,
|
| 76 |
+
freqs_cis,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
y = y.view(b, ql, n_heads, head_dim)
|
| 80 |
+
|
| 81 |
+
return y
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def main():
|
| 86 |
+
#––– Test hyperparameters –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
|
| 87 |
+
batch_size = 1
|
| 88 |
+
q_len = 1
|
| 89 |
+
kv_len = 1
|
| 90 |
+
num_heads = 16
|
| 91 |
+
n_kv_heads = 16
|
| 92 |
+
head_dim = 128
|
| 93 |
+
|
| 94 |
+
max_batch_size = 1
|
| 95 |
+
max_seq_len = 1024
|
| 96 |
+
|
| 97 |
+
page_size = 256
|
| 98 |
+
|
| 99 |
+
device = "cuda"
|
| 100 |
+
|
| 101 |
+
#––– Random query, key, value tensors –––––––––––––––––––––––––––––––––––––––––––––––––––
|
| 102 |
+
query_states = torch.randn(batch_size, q_len, num_heads, head_dim, device=device)
|
| 103 |
+
key_states = torch.randn(batch_size, kv_len, num_heads, head_dim, device=device)
|
| 104 |
+
value_states = torch.randn(batch_size, kv_len, num_heads, head_dim, device=device)
|
| 105 |
+
|
| 106 |
+
k_cache = torch.randn(max_batch_size, max_seq_len, num_heads, head_dim, device=device)
|
| 107 |
+
v_cache = torch.randn(max_batch_size, max_seq_len, num_heads, head_dim, device=device)
|
| 108 |
+
|
| 109 |
+
attn_out = fused_mha_interface(
|
| 110 |
+
query_states,
|
| 111 |
+
key_states,
|
| 112 |
+
value_states,
|
| 113 |
+
k_cache=k_cache,
|
| 114 |
+
v_cache=v_cache,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
expected_shape = (batch_size, q_len, num_heads, head_dim)
|
| 118 |
+
print(f"[test] output shape: {attn_out.shape} (expected {expected_shape})")
|
| 119 |
+
|
| 120 |
+
if attn_out.shape == expected_shape:
|
| 121 |
+
print("[test] ✅ Success: output tensor has correct shape.")
|
| 122 |
+
else:
|
| 123 |
+
print("[test] ❌ Failure: shape mismatch.")
|
| 124 |
+
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
main()
|
mamba2.py
ADDED
|
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, Tri Dao, Albert Gu.
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
from einops import rearrange, repeat, pack, unpack
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
| 13 |
+
except ImportError:
|
| 14 |
+
causal_conv1d_fn, causal_conv1d_update = None, None
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
from causal_conv1d.causal_conv1d_varlen import causal_conv1d_varlen_states
|
| 18 |
+
except ImportError:
|
| 19 |
+
causal_conv1d_varlen_states = None
|
| 20 |
+
|
| 21 |
+
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
| 22 |
+
from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
from mamba_ssm.distributed.tensor_parallel import ColumnParallelLinear, RowParallelLinear
|
| 26 |
+
from mamba_ssm.distributed.distributed_utils import all_reduce, reduce_scatter
|
| 27 |
+
|
| 28 |
+
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
|
| 29 |
+
from mamba_ssm.ops.triton.ssd_combined import mamba_split_conv1d_scan_combined
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Mamba2(nn.Module):
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
config,
|
| 36 |
+
conv_init=None,
|
| 37 |
+
d_ssm=None, # If not None, we only apply SSM on this many dimensions, the rest uses gated MLP
|
| 38 |
+
ngroups=1,
|
| 39 |
+
A_init_range=(1, 16),
|
| 40 |
+
D_has_hdim=False,
|
| 41 |
+
rmsnorm=True,
|
| 42 |
+
norm_before_gate=False,
|
| 43 |
+
dt_min=0.001,
|
| 44 |
+
dt_max=0.1,
|
| 45 |
+
dt_init_floor=1e-4,
|
| 46 |
+
dt_limit=(0.0, float("inf")),
|
| 47 |
+
bias=False,
|
| 48 |
+
conv_bias=True,
|
| 49 |
+
# Fused kernel and sharding options
|
| 50 |
+
chunk_size=256,
|
| 51 |
+
use_mem_eff_path=False, # True,
|
| 52 |
+
layer_idx=None, # Absorb kwarg for general module
|
| 53 |
+
process_group=None,
|
| 54 |
+
sequence_parallel=True,
|
| 55 |
+
device=None,
|
| 56 |
+
dtype=None,
|
| 57 |
+
):
|
| 58 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
| 59 |
+
super().__init__()
|
| 60 |
+
|
| 61 |
+
self.config = config
|
| 62 |
+
self.d_model = config.hidden_size
|
| 63 |
+
self.d_state = config.mamba_d_state
|
| 64 |
+
self.d_conv = config.mamba_d_conv
|
| 65 |
+
|
| 66 |
+
self.conv_init = conv_init
|
| 67 |
+
self.expand = config.mamba_expand
|
| 68 |
+
self.process_group = process_group
|
| 69 |
+
self.sequence_parallel = sequence_parallel
|
| 70 |
+
self.world_size = 1 if process_group is None else process_group.size()
|
| 71 |
+
self.local_rank = 0 if process_group is None else process_group.rank()
|
| 72 |
+
self.d_inner = (self.expand * self.d_model) // self.world_size
|
| 73 |
+
assert self.d_inner * self.world_size == self.expand * self.d_model
|
| 74 |
+
self.headdim = config.mamba2_headdim
|
| 75 |
+
self.d_ssm = self.d_inner if d_ssm is None else d_ssm // self.world_size
|
| 76 |
+
assert ngroups % self.world_size == 0
|
| 77 |
+
self.ngroups = ngroups // self.world_size
|
| 78 |
+
assert self.d_ssm % self.headdim == 0
|
| 79 |
+
self.nheads = self.d_ssm // self.headdim
|
| 80 |
+
self.D_has_hdim = D_has_hdim
|
| 81 |
+
self.rmsnorm = rmsnorm
|
| 82 |
+
self.norm_before_gate = norm_before_gate
|
| 83 |
+
self.dt_limit = dt_limit
|
| 84 |
+
self.activation = "silu"
|
| 85 |
+
self.chunk_size = chunk_size
|
| 86 |
+
self.use_mem_eff_path = use_mem_eff_path
|
| 87 |
+
self.layer_idx = layer_idx
|
| 88 |
+
|
| 89 |
+
assert (self.d_model * self.expand / self.headdim) % 8 == 0
|
| 90 |
+
|
| 91 |
+
# Order: [z, x, B, C, dt]
|
| 92 |
+
d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
|
| 93 |
+
if self.process_group is None:
|
| 94 |
+
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=bias, **factory_kwargs)
|
| 95 |
+
else:
|
| 96 |
+
self.in_proj = ColumnParallelLinear(self.d_model, d_in_proj * self.world_size, bias=bias,
|
| 97 |
+
process_group=self.process_group, sequence_parallel=self.sequence_parallel,
|
| 98 |
+
**factory_kwargs)
|
| 99 |
+
|
| 100 |
+
conv_dim = self.d_ssm + 2 * self.ngroups * self.d_state
|
| 101 |
+
self.conv1d = nn.Conv1d(
|
| 102 |
+
in_channels=conv_dim,
|
| 103 |
+
out_channels=conv_dim,
|
| 104 |
+
bias=conv_bias,
|
| 105 |
+
kernel_size=self.d_conv,
|
| 106 |
+
groups=conv_dim,
|
| 107 |
+
padding=self.d_conv - 1,
|
| 108 |
+
**factory_kwargs,
|
| 109 |
+
)
|
| 110 |
+
if self.conv_init is not None:
|
| 111 |
+
nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init)
|
| 112 |
+
|
| 113 |
+
self.act = nn.SiLU()
|
| 114 |
+
|
| 115 |
+
# Initialize log dt bias
|
| 116 |
+
dt = torch.exp(
|
| 117 |
+
torch.rand(self.nheads, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
|
| 118 |
+
+ math.log(dt_min)
|
| 119 |
+
)
|
| 120 |
+
dt = torch.clamp(dt, min=dt_init_floor)
|
| 121 |
+
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
| 122 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
| 123 |
+
|
| 124 |
+
self.dt_bias = nn.Parameter(inv_dt)
|
| 125 |
+
# Just to be explicit. Without this we already don't put wd on dt_bias because of the check
|
| 126 |
+
# name.endswith("bias") in param_grouping.py
|
| 127 |
+
self.dt_bias._no_weight_decay = True
|
| 128 |
+
|
| 129 |
+
assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0]
|
| 130 |
+
A = torch.empty(self.nheads, dtype=torch.float32, device=device).uniform_(*A_init_range)
|
| 131 |
+
A_log = torch.log(A).to(dtype=dtype)
|
| 132 |
+
self.A_log = nn.Parameter(A_log)
|
| 133 |
+
self.A_log._no_weight_decay = True
|
| 134 |
+
|
| 135 |
+
# D "skip" parameter
|
| 136 |
+
self.D = nn.Parameter(torch.ones(self.d_ssm if self.D_has_hdim else self.nheads, device=device))
|
| 137 |
+
self.D._no_weight_decay = True
|
| 138 |
+
|
| 139 |
+
if self.rmsnorm:
|
| 140 |
+
assert RMSNormGated is not None
|
| 141 |
+
self.norm = RMSNormGated(self.d_ssm, eps=1e-5, norm_before_gate=self.norm_before_gate,
|
| 142 |
+
group_size=self.d_ssm // ngroups, **factory_kwargs)
|
| 143 |
+
|
| 144 |
+
if self.process_group is None:
|
| 145 |
+
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
| 146 |
+
else:
|
| 147 |
+
self.out_proj = RowParallelLinear(self.d_inner * self.world_size, self.d_model, bias=bias,
|
| 148 |
+
process_group=self.process_group, sequence_parallel=self.sequence_parallel,
|
| 149 |
+
**factory_kwargs)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def forward(self, hidden_states, attention_mask=None, past_key_value=None, seqlen=None, seq_idx=None, cu_seqlens=None, inference_params=None):
|
| 153 |
+
"""
|
| 154 |
+
hidden_states: (batch, seqlen, hidden_dim) if seqlen=None.
|
| 155 |
+
If seqlen is not None, hidden_states is (batch * seqlen, hidden_dim). This is so that when we
|
| 156 |
+
split hidden_states during sequence parallel, we split the batch * seqlen dimension
|
| 157 |
+
(in case batch is small).
|
| 158 |
+
Returns: same shape as u
|
| 159 |
+
"""
|
| 160 |
+
# assert past_key_value is None, "Not implemented yet!!!"
|
| 161 |
+
|
| 162 |
+
seqlen_og = seqlen
|
| 163 |
+
if seqlen is None:
|
| 164 |
+
batch, seqlen, dim = hidden_states.shape
|
| 165 |
+
else:
|
| 166 |
+
batch_seqlen, dim = hidden_states.shape
|
| 167 |
+
batch = batch_seqlen // seqlen
|
| 168 |
+
|
| 169 |
+
conv_state, ssm_state = None, None
|
| 170 |
+
|
| 171 |
+
if inference_params is not None:
|
| 172 |
+
inference_batch = cu_seqlens.shape[0] - 1 if cu_seqlens is not None else batch
|
| 173 |
+
conv_state, ssm_state = self._get_states_from_cache(inference_params, inference_batch)
|
| 174 |
+
|
| 175 |
+
if inference_params.seqlen_offset > 0:
|
| 176 |
+
# The states are updated inplace
|
| 177 |
+
out, _, _ = self.step(hidden_states, conv_state, ssm_state)
|
| 178 |
+
return out, past_key_value
|
| 179 |
+
|
| 180 |
+
zxbcdt = self.in_proj(hidden_states) # (B, L, d_in_proj) or (B * L, d_in_proj)
|
| 181 |
+
|
| 182 |
+
if seqlen_og is not None:
|
| 183 |
+
zxbcdt = rearrange(zxbcdt, "(b l) d -> b l d", l=seqlen)
|
| 184 |
+
# If the model is loaded in fp16, without the .float() here, A might be -inf
|
| 185 |
+
A = -torch.exp(self.A_log.float()) # (nheads) or (d_inner, d_state)
|
| 186 |
+
dt_limit_kwargs = {} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit)
|
| 187 |
+
if self.use_mem_eff_path and inference_params is None:
|
| 188 |
+
out = mamba_split_conv1d_scan_combined(
|
| 189 |
+
zxbcdt,
|
| 190 |
+
rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
| 191 |
+
self.conv1d.bias,
|
| 192 |
+
self.dt_bias,
|
| 193 |
+
A,
|
| 194 |
+
D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
|
| 195 |
+
chunk_size=self.chunk_size,
|
| 196 |
+
seq_idx=seq_idx,
|
| 197 |
+
activation=self.activation,
|
| 198 |
+
rmsnorm_weight=self.norm.weight if self.rmsnorm else None,
|
| 199 |
+
rmsnorm_eps=self.norm.eps if self.rmsnorm else 1e-6,
|
| 200 |
+
outproj_weight=self.out_proj.weight,
|
| 201 |
+
outproj_bias=self.out_proj.bias,
|
| 202 |
+
headdim=None if self.D_has_hdim else self.headdim,
|
| 203 |
+
ngroups=self.ngroups,
|
| 204 |
+
norm_before_gate=self.norm_before_gate,
|
| 205 |
+
**dt_limit_kwargs,
|
| 206 |
+
)
|
| 207 |
+
if seqlen_og is not None:
|
| 208 |
+
out = rearrange(out, "b l d -> (b l) d")
|
| 209 |
+
if self.process_group is not None:
|
| 210 |
+
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
|
| 211 |
+
out = reduce_fn(out, self.process_group)
|
| 212 |
+
else:
|
| 213 |
+
d_mlp = (zxbcdt.shape[-1] - 2 * self.d_ssm - 2 * self.ngroups * self.d_state - self.nheads) // 2
|
| 214 |
+
z0, x0, z, xBC, dt = torch.split(
|
| 215 |
+
zxbcdt,
|
| 216 |
+
[d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
|
| 217 |
+
dim=-1
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
if conv_state is not None:
|
| 221 |
+
if cu_seqlens is None:
|
| 222 |
+
# If we just take xBC[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
|
| 223 |
+
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
|
| 224 |
+
xBC_t = rearrange(xBC, "b l d -> b d l")
|
| 225 |
+
conv_state.copy_(F.pad(xBC_t, (self.d_conv - xBC_t.shape[-1], 0))) # Update state (B D W)
|
| 226 |
+
else:
|
| 227 |
+
assert causal_conv1d_varlen_states is not None, "varlen inference requires causal_conv1d package"
|
| 228 |
+
assert batch == 1, "varlen inference only supports batch dimension 1"
|
| 229 |
+
conv_varlen_states = causal_conv1d_varlen_states(
|
| 230 |
+
xBC.squeeze(0), cu_seqlens, state_len=conv_state.shape[-1]
|
| 231 |
+
)
|
| 232 |
+
conv_state.copy_(conv_varlen_states)
|
| 233 |
+
assert self.activation in ["silu", "swish"]
|
| 234 |
+
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
|
| 235 |
+
assert seq_idx is None, "varlen conv1d requires the causal_conv1d package"
|
| 236 |
+
xBC = self.act(
|
| 237 |
+
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, -(self.dconv - 1):]
|
| 238 |
+
) # (B, L, self.d_ssm + 2 * ngroups * d_state)
|
| 239 |
+
else:
|
| 240 |
+
xBC = causal_conv1d_fn(
|
| 241 |
+
xBC.transpose(1, 2),
|
| 242 |
+
rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
| 243 |
+
bias=self.conv1d.bias,
|
| 244 |
+
activation=self.activation,
|
| 245 |
+
# seq_idx=seq_idx,
|
| 246 |
+
).transpose(1, 2)
|
| 247 |
+
|
| 248 |
+
x, B, C = torch.split(xBC, [self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
y = mamba_chunk_scan_combined(
|
| 252 |
+
rearrange(x, "b l (h p) -> b l h p", p=self.headdim),
|
| 253 |
+
dt,
|
| 254 |
+
A,
|
| 255 |
+
rearrange(B, "b l (g n) -> b l g n", g=self.ngroups),
|
| 256 |
+
rearrange(C, "b l (g n) -> b l g n", g=self.ngroups),
|
| 257 |
+
chunk_size=self.chunk_size,
|
| 258 |
+
# D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
|
| 259 |
+
D=self.D,
|
| 260 |
+
z=rearrange(z, "b l (h p) -> b l h p", p=self.headdim) if not self.rmsnorm else None,
|
| 261 |
+
dt_bias=self.dt_bias,
|
| 262 |
+
dt_softplus=True,
|
| 263 |
+
seq_idx=seq_idx,
|
| 264 |
+
cu_seqlens=cu_seqlens,
|
| 265 |
+
**dt_limit_kwargs,
|
| 266 |
+
return_final_states=ssm_state is not None,
|
| 267 |
+
return_varlen_states=cu_seqlens is not None and inference_params is not None,
|
| 268 |
+
)
|
| 269 |
+
if ssm_state is not None:
|
| 270 |
+
y, last_state, *rest = y
|
| 271 |
+
if cu_seqlens is None:
|
| 272 |
+
ssm_state.copy_(last_state)
|
| 273 |
+
else:
|
| 274 |
+
varlen_states = rest[0]
|
| 275 |
+
ssm_state.copy_(varlen_states)
|
| 276 |
+
y = rearrange(y, "b l h p -> b l (h p)")
|
| 277 |
+
if self.rmsnorm:
|
| 278 |
+
y_full = y
|
| 279 |
+
z_full = z
|
| 280 |
+
|
| 281 |
+
y = self.norm(y_full, z_full)
|
| 282 |
+
if d_mlp > 0:
|
| 283 |
+
y = torch.cat([F.silu(z0) * x0, y], dim=-1)
|
| 284 |
+
if seqlen_og is not None:
|
| 285 |
+
y = rearrange(y, "b l d -> (b l) d")
|
| 286 |
+
|
| 287 |
+
out = self.out_proj(y)
|
| 288 |
+
|
| 289 |
+
return out, past_key_value
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def step(self, hidden_states, conv_state, ssm_state):
|
| 293 |
+
dtype = hidden_states.dtype
|
| 294 |
+
# Remove single token limitation - now supports hidden_states.shape[1] > 1
|
| 295 |
+
batch_size, seq_len, _ = hidden_states.shape
|
| 296 |
+
|
| 297 |
+
if seq_len == 1:
|
| 298 |
+
# Single token case - keep existing optimized path
|
| 299 |
+
zxbcdt = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
|
| 300 |
+
else:
|
| 301 |
+
# Multi-token case - process without squeezing
|
| 302 |
+
zxbcdt = self.in_proj(hidden_states) # (B L 2D)
|
| 303 |
+
|
| 304 |
+
d_mlp = (zxbcdt.shape[-1] - 2 * self.d_ssm - 2 * self.ngroups * self.d_state - self.nheads) // 2
|
| 305 |
+
|
| 306 |
+
if seq_len == 1:
|
| 307 |
+
z0, x0, z, xBC, dt = torch.split(
|
| 308 |
+
zxbcdt,
|
| 309 |
+
[d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
|
| 310 |
+
dim=-1
|
| 311 |
+
)
|
| 312 |
+
else:
|
| 313 |
+
z0, x0, z, xBC, dt = torch.split(
|
| 314 |
+
zxbcdt,
|
| 315 |
+
[d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
|
| 316 |
+
dim=-1
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
# Conv step - handle both single and multi-token cases
|
| 320 |
+
if seq_len == 1:
|
| 321 |
+
# Single token optimized path
|
| 322 |
+
if causal_conv1d_update is None:
|
| 323 |
+
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
|
| 324 |
+
conv_state[:, :, -1] = xBC
|
| 325 |
+
xBC = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
|
| 326 |
+
if self.conv1d.bias is not None:
|
| 327 |
+
xBC = xBC + self.conv1d.bias
|
| 328 |
+
xBC = self.act(xBC).to(dtype=dtype)
|
| 329 |
+
else:
|
| 330 |
+
xBC = causal_conv1d_update(
|
| 331 |
+
xBC,
|
| 332 |
+
conv_state,
|
| 333 |
+
rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
| 334 |
+
self.conv1d.bias,
|
| 335 |
+
self.activation,
|
| 336 |
+
)
|
| 337 |
+
else:
|
| 338 |
+
# Multi-token case - update conv_state and process sequence
|
| 339 |
+
# Update conv_state with the new sequence
|
| 340 |
+
xBC_t = rearrange(xBC, "b l d -> b d l")
|
| 341 |
+
conv_state.copy_(F.pad(xBC_t, (self.d_conv - xBC_t.shape[-1], 0))) # Update state (B D W)
|
| 342 |
+
|
| 343 |
+
# Process convolution for the full sequence
|
| 344 |
+
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
|
| 345 |
+
xBC = self.act(
|
| 346 |
+
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, -(self.d_conv - 1):]
|
| 347 |
+
) # (B, L, self.d_ssm + 2 * ngroups * d_state)
|
| 348 |
+
else:
|
| 349 |
+
xBC = causal_conv1d_fn(
|
| 350 |
+
xBC.transpose(1, 2),
|
| 351 |
+
rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
| 352 |
+
bias=self.conv1d.bias,
|
| 353 |
+
activation=self.activation,
|
| 354 |
+
).transpose(1, 2)
|
| 355 |
+
|
| 356 |
+
x, B, C = torch.split(xBC, [self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
|
| 357 |
+
A = -torch.exp(self.A_log.float()) # (nheads,)
|
| 358 |
+
|
| 359 |
+
# SSM step - handle both single and multi-token cases
|
| 360 |
+
if seq_len == 1:
|
| 361 |
+
# Single token optimized path
|
| 362 |
+
if selective_state_update is None:
|
| 363 |
+
assert self.ngroups == 1, "Only support ngroups=1 for this inference code path"
|
| 364 |
+
# Discretize A and B
|
| 365 |
+
dt = F.softplus(dt + self.dt_bias.to(dtype=dt.dtype)) # (batch, nheads)
|
| 366 |
+
dA = torch.exp(dt * A) # (batch, nheads)
|
| 367 |
+
x = rearrange(x, "b (h p) -> b h p", p=self.headdim)
|
| 368 |
+
dBx = torch.einsum("bh,bn,bhp->bhpn", dt, B, x)
|
| 369 |
+
ssm_state.copy_(ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx)
|
| 370 |
+
y = torch.einsum("bhpn,bn->bhp", ssm_state.to(dtype), C)
|
| 371 |
+
y = y + rearrange(self.D.to(dtype), "h -> h 1") * x
|
| 372 |
+
y = rearrange(y, "b h p -> b (h p)")
|
| 373 |
+
if not self.rmsnorm:
|
| 374 |
+
y = y * self.act(z) # (B D)
|
| 375 |
+
else:
|
| 376 |
+
A = repeat(A, "h -> h p n", p=self.headdim, n=self.d_state).to(dtype=torch.float32)
|
| 377 |
+
dt = repeat(dt, "b h -> b h p", p=self.headdim)
|
| 378 |
+
dt_bias = repeat(self.dt_bias, "h -> h p", p=self.headdim)
|
| 379 |
+
D = repeat(self.D, "h -> h p", p=self.headdim)
|
| 380 |
+
B = rearrange(B, "b (g n) -> b g n", g=self.ngroups)
|
| 381 |
+
C = rearrange(C, "b (g n) -> b g n", g=self.ngroups)
|
| 382 |
+
x_reshaped = rearrange(x, "b (h p) -> b h p", p=self.headdim)
|
| 383 |
+
if not self.rmsnorm:
|
| 384 |
+
z = rearrange(z, "b (h p) -> b h p", p=self.headdim)
|
| 385 |
+
y = selective_state_update(
|
| 386 |
+
ssm_state, x_reshaped, dt, A, B, C, D, z=z if not self.rmsnorm else None,
|
| 387 |
+
dt_bias=dt_bias, dt_softplus=True
|
| 388 |
+
)
|
| 389 |
+
y = rearrange(y, "b h p -> b (h p)")
|
| 390 |
+
else:
|
| 391 |
+
# Multi-token case - use mamba_chunk_scan_combined similar to forward method
|
| 392 |
+
dt_limit_kwargs = {} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit)
|
| 393 |
+
|
| 394 |
+
y = mamba_chunk_scan_combined(
|
| 395 |
+
rearrange(x, "b l (h p) -> b l h p", p=self.headdim),
|
| 396 |
+
dt,
|
| 397 |
+
A,
|
| 398 |
+
rearrange(B, "b l (g n) -> b l g n", g=self.ngroups),
|
| 399 |
+
rearrange(C, "b l (g n) -> b l g n", g=self.ngroups),
|
| 400 |
+
chunk_size=self.chunk_size,
|
| 401 |
+
D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
|
| 402 |
+
z=rearrange(z, "b l (h p) -> b l h p", p=self.headdim) if not self.rmsnorm else None,
|
| 403 |
+
dt_bias=self.dt_bias,
|
| 404 |
+
dt_softplus=True,
|
| 405 |
+
**dt_limit_kwargs,
|
| 406 |
+
return_final_states=True,
|
| 407 |
+
)
|
| 408 |
+
# Extract final state and update ssm_state
|
| 409 |
+
y, final_ssm_state = y
|
| 410 |
+
ssm_state.copy_(final_ssm_state)
|
| 411 |
+
y = rearrange(y, "b l h p -> b l (h p)")
|
| 412 |
+
|
| 413 |
+
if self.rmsnorm:
|
| 414 |
+
y = self.norm(y, z)
|
| 415 |
+
if d_mlp > 0:
|
| 416 |
+
y = torch.cat([F.silu(z0) * x0, y], dim=-1)
|
| 417 |
+
out = self.out_proj(y)
|
| 418 |
+
|
| 419 |
+
# Ensure output shape consistency
|
| 420 |
+
if seq_len == 1 and out.dim() == 2:
|
| 421 |
+
out = out.unsqueeze(1) # (B, 1, D)
|
| 422 |
+
|
| 423 |
+
return out, conv_state, ssm_state
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
| 427 |
+
device = self.out_proj.weight.device
|
| 428 |
+
conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
|
| 429 |
+
conv_state = torch.zeros(
|
| 430 |
+
batch_size, self.d_conv, self.conv1d.weight.shape[0], device=device, dtype=conv_dtype
|
| 431 |
+
).transpose(1, 2)
|
| 432 |
+
ssm_dtype = self.in_proj.weight.dtype if dtype is None else dtype
|
| 433 |
+
ssm_state = torch.zeros(
|
| 434 |
+
batch_size, self.nheads, self.headdim, self.d_state, device=device, dtype=ssm_dtype
|
| 435 |
+
)
|
| 436 |
+
return conv_state, ssm_state
|
| 437 |
+
|
| 438 |
+
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
|
| 439 |
+
assert self.layer_idx is not None
|
| 440 |
+
if self.layer_idx not in inference_params.key_value_memory_dict:
|
| 441 |
+
batch_shape = (batch_size,)
|
| 442 |
+
conv_state = torch.zeros(
|
| 443 |
+
batch_size,
|
| 444 |
+
self.d_conv,
|
| 445 |
+
self.conv1d.weight.shape[0],
|
| 446 |
+
device=self.conv1d.weight.device,
|
| 447 |
+
dtype=self.conv1d.weight.dtype,
|
| 448 |
+
).transpose(1, 2)
|
| 449 |
+
ssm_state = torch.zeros(
|
| 450 |
+
batch_size,
|
| 451 |
+
self.nheads,
|
| 452 |
+
self.headdim,
|
| 453 |
+
self.d_state,
|
| 454 |
+
device=self.in_proj.weight.device,
|
| 455 |
+
dtype=self.in_proj.weight.dtype,
|
| 456 |
+
)
|
| 457 |
+
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
|
| 458 |
+
else:
|
| 459 |
+
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
|
| 460 |
+
# TODO: What if batch size changes between generation, and we reuse the same states?
|
| 461 |
+
if initialize_states:
|
| 462 |
+
conv_state.zero_()
|
| 463 |
+
ssm_state.zero_()
|
| 464 |
+
return conv_state, ssm_state
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4fdb6a7f8e726e8e00f5f63dde79d18b499722f6ce7199027679cd01c9f71a87
|
| 3 |
+
size 1930804728
|
modeling_fast_slm.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
triton_attention.py
ADDED
|
@@ -0,0 +1,2714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Custom ops for MHA/XQA attention."""
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
from dataclasses import astuple
|
| 5 |
+
from typing import List, Optional
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import triton
|
| 10 |
+
|
| 11 |
+
from triton import language as tl
|
| 12 |
+
|
| 13 |
+
from abc import ABC, abstractmethod
|
| 14 |
+
from dataclasses import dataclass, field, fields
|
| 15 |
+
from typing import Dict, List, Literal, Optional, Protocol, Sequence, Tuple, Type, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from torch.export import Dim
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@triton.jit
|
| 22 |
+
def update_kv_cache(
|
| 23 |
+
k_ptr, # [B*S, N, D]
|
| 24 |
+
v_ptr, # [B*S, N, D]
|
| 25 |
+
seq_len_ptr, # [b] # length of each sequence in a batch
|
| 26 |
+
seq_start_indices_ptr, # [b] # start indices of a sequence in flattened q/k/v.
|
| 27 |
+
k_cache_ptr, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD]
|
| 28 |
+
v_cache_ptr, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD]
|
| 29 |
+
input_pos_ptr, # Specifies the sequence index in the caches at which to write the provided kv
|
| 30 |
+
cache_loc_ptr, # Specifies the batch index for each of the input sequences
|
| 31 |
+
MAX_SEQ_LENGTH: tl.constexpr,
|
| 32 |
+
N_KV_HEADS: tl.constexpr,
|
| 33 |
+
Q_D_HEAD: tl.constexpr,
|
| 34 |
+
V_D_HEAD: tl.constexpr,
|
| 35 |
+
SEQ_BLOCK: tl.constexpr,
|
| 36 |
+
GENERATE_ONLY: tl.constexpr,
|
| 37 |
+
):
|
| 38 |
+
batch_id = tl.program_id(axis=0)
|
| 39 |
+
head_id = tl.program_id(axis=1)
|
| 40 |
+
seq_block_id = tl.program_id(axis=2)
|
| 41 |
+
|
| 42 |
+
# Each program is responsible for a block of tokens in a single batch.
|
| 43 |
+
if GENERATE_ONLY:
|
| 44 |
+
seq_start_index = batch_id
|
| 45 |
+
seq_len: tl.constexpr = 1
|
| 46 |
+
else:
|
| 47 |
+
seq_start_index = tl.load(seq_start_indices_ptr + batch_id)
|
| 48 |
+
seq_len = tl.load(seq_len_ptr + batch_id)
|
| 49 |
+
|
| 50 |
+
# cache is [bsnd]
|
| 51 |
+
# cache_loc_ptr stores the batch index for the sequences provided to the kernel.
|
| 52 |
+
cache_loc = tl.load(cache_loc_ptr + batch_id)
|
| 53 |
+
|
| 54 |
+
kv_position = tl.load(input_pos_ptr + batch_id)
|
| 55 |
+
|
| 56 |
+
K_D_HEAD: tl.constexpr = Q_D_HEAD
|
| 57 |
+
k_cache_batch_offset = cache_loc * N_KV_HEADS * MAX_SEQ_LENGTH * K_D_HEAD
|
| 58 |
+
v_cache_batch_offset = cache_loc * N_KV_HEADS * MAX_SEQ_LENGTH * V_D_HEAD
|
| 59 |
+
|
| 60 |
+
k_dhead_offsets = tl.arange(0, triton.next_power_of_2(K_D_HEAD))
|
| 61 |
+
k_dhead_mask = k_dhead_offsets < K_D_HEAD
|
| 62 |
+
|
| 63 |
+
v_dhead_offsets = tl.arange(0, triton.next_power_of_2(V_D_HEAD))
|
| 64 |
+
v_dhead_mask = v_dhead_offsets < V_D_HEAD
|
| 65 |
+
|
| 66 |
+
seq_offsets = seq_block_id * SEQ_BLOCK + tl.arange(0, SEQ_BLOCK)
|
| 67 |
+
seq_mask = seq_offsets < seq_len
|
| 68 |
+
|
| 69 |
+
k_load_mask = seq_mask[:, None] * k_dhead_mask[None, :]
|
| 70 |
+
v_load_mask = seq_mask[:, None] * v_dhead_mask[None, :]
|
| 71 |
+
|
| 72 |
+
k_batch_offset = seq_start_index * N_KV_HEADS * K_D_HEAD
|
| 73 |
+
v_batch_offset = seq_start_index * N_KV_HEADS * V_D_HEAD
|
| 74 |
+
# Write back to kv-caches
|
| 75 |
+
ks = tl.load(
|
| 76 |
+
k_ptr
|
| 77 |
+
+ k_batch_offset
|
| 78 |
+
+ seq_offsets[:, None] * N_KV_HEADS * K_D_HEAD
|
| 79 |
+
+ head_id * K_D_HEAD
|
| 80 |
+
+ k_dhead_offsets[None, :],
|
| 81 |
+
mask=k_load_mask,
|
| 82 |
+
)
|
| 83 |
+
vs = tl.load(
|
| 84 |
+
v_ptr
|
| 85 |
+
+ v_batch_offset
|
| 86 |
+
+ seq_offsets[:, None] * N_KV_HEADS * V_D_HEAD
|
| 87 |
+
+ head_id * V_D_HEAD
|
| 88 |
+
+ v_dhead_offsets[None, :],
|
| 89 |
+
mask=v_load_mask,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
kv_writeback_seq_offsets = seq_offsets + kv_position
|
| 93 |
+
|
| 94 |
+
k_cache_offset = (
|
| 95 |
+
k_cache_batch_offset
|
| 96 |
+
+ kv_writeback_seq_offsets[:, None] * K_D_HEAD * N_KV_HEADS
|
| 97 |
+
+ head_id * K_D_HEAD
|
| 98 |
+
+ k_dhead_offsets[None, :]
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
v_cache_offset = (
|
| 102 |
+
v_cache_batch_offset
|
| 103 |
+
+ kv_writeback_seq_offsets[:, None] * V_D_HEAD * N_KV_HEADS
|
| 104 |
+
+ head_id * V_D_HEAD
|
| 105 |
+
+ v_dhead_offsets[None, :]
|
| 106 |
+
)
|
| 107 |
+
tl.store(k_cache_ptr + k_cache_offset, ks, k_load_mask)
|
| 108 |
+
tl.store(v_cache_ptr + v_cache_offset, vs, v_load_mask)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@triton.jit
|
| 112 |
+
def gqa_attention_kv_stage1(
|
| 113 |
+
q_ptr, # [Batch, 1, N_HEADS, D_HEAD]
|
| 114 |
+
k_cache_ptr, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD]
|
| 115 |
+
v_cache_ptr, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD]
|
| 116 |
+
cache_loc_ptr, # [Batch] # Specifies the batch index for each of the generate tokens.
|
| 117 |
+
input_pos_ptr, # [Batch]
|
| 118 |
+
output_values_ptr, # [Batch, N_HEADS, num_blocks, D_HEAD]
|
| 119 |
+
output_logsumexp_ptr, # [Batch, N_HEADS, num_blocks]
|
| 120 |
+
num_blocks,
|
| 121 |
+
MAX_SEQ_LEN: tl.constexpr, # Maximum supported sequence length
|
| 122 |
+
N_HEADS: tl.constexpr, # Number of heads
|
| 123 |
+
N_KV_HEADS: tl.constexpr, # Number of KV heads.
|
| 124 |
+
Q_D_HEAD: tl.constexpr, # Dimension of each query head.
|
| 125 |
+
V_D_HEAD: tl.constexpr, # Dimension of each key/value head
|
| 126 |
+
SEQ_BLOCK_SIZE: tl.constexpr, # Block size used for tiling the sequence dim.
|
| 127 |
+
HEAD_BLOCK_SIZE: tl.constexpr, # pad to 16 if HEAD_RATIO is < 16 to invoke tensor cores.
|
| 128 |
+
):
|
| 129 |
+
"""Attention kernel to be used for generate-only batches.
|
| 130 |
+
|
| 131 |
+
Specialized for GQA.
|
| 132 |
+
|
| 133 |
+
Assumes that kv caches have been updated.
|
| 134 |
+
|
| 135 |
+
Supports non-power-of-2 D_HEAD
|
| 136 |
+
|
| 137 |
+
Uses flash decoding.
|
| 138 |
+
KV-cache layout is assumed to be [Batch,Seq, Head, Dim]
|
| 139 |
+
1. Fetch the K-cache from 0 to input_pos
|
| 140 |
+
2. Fetch the V-cache from 0 to input_pos
|
| 141 |
+
3. A = Q*K^T [1,D_HEAD] * [1,seq_len,D_HEAD] -> [1, seq_len]
|
| 142 |
+
4. S = softmax(A)
|
| 143 |
+
5. O = S*V [1, seq_len] * [1, seq_len, D_HEAD] -> [1, D_HEAD]
|
| 144 |
+
"""
|
| 145 |
+
# Assume KV-cache layout: [Batch, Seq, Head, Dim]
|
| 146 |
+
# A program is responsible for 1 batch, 1 head and a block of sequences.
|
| 147 |
+
batch_id = tl.program_id(axis=0)
|
| 148 |
+
kv_head_id = tl.program_id(axis=1)
|
| 149 |
+
seq_block_id = tl.program_id(axis=2)
|
| 150 |
+
|
| 151 |
+
kv_position = tl.load(input_pos_ptr + batch_id)
|
| 152 |
+
kv_batch_id = tl.load(cache_loc_ptr + batch_id)
|
| 153 |
+
K_D_HEAD: tl.constexpr = Q_D_HEAD
|
| 154 |
+
batch_offset = kv_batch_id * N_KV_HEADS * MAX_SEQ_LEN
|
| 155 |
+
|
| 156 |
+
# Offsets for the block of sequences this program processes.
|
| 157 |
+
seq_start_pos = seq_block_id * SEQ_BLOCK_SIZE
|
| 158 |
+
|
| 159 |
+
# The number of Q heads that map to each KV head.
|
| 160 |
+
HEAD_RATIO: tl.constexpr = N_HEADS // N_KV_HEADS # This needs to be a power-of-2
|
| 161 |
+
if seq_start_pos > kv_position:
|
| 162 |
+
return
|
| 163 |
+
seq_offsets = seq_start_pos + tl.arange(0, SEQ_BLOCK_SIZE)
|
| 164 |
+
seq_mask = seq_offsets <= kv_position
|
| 165 |
+
|
| 166 |
+
# Need to pad the head dim to 16 if HEAD_RATIO is < 16 so that tensor cores can be invoked
|
| 167 |
+
#
|
| 168 |
+
head_offsets = kv_head_id * HEAD_RATIO + tl.arange(0, HEAD_BLOCK_SIZE)
|
| 169 |
+
head_mask = head_offsets < (kv_head_id * HEAD_RATIO + HEAD_RATIO)
|
| 170 |
+
# Assuming D_HEAD is a power of 2
|
| 171 |
+
q_dhead_offsets = tl.arange(0, triton.next_power_of_2(Q_D_HEAD))
|
| 172 |
+
q_dhead_mask = q_dhead_offsets < Q_D_HEAD
|
| 173 |
+
|
| 174 |
+
v_dhead_offsets = tl.arange(0, triton.next_power_of_2(V_D_HEAD))
|
| 175 |
+
v_dhead_mask = v_dhead_offsets < V_D_HEAD
|
| 176 |
+
|
| 177 |
+
sm_scale: tl.constexpr = 1.0 / (Q_D_HEAD**0.5)
|
| 178 |
+
|
| 179 |
+
# Program loads the entire Q for the head assigned to it.
|
| 180 |
+
# [NUM_HEADS, Q_D_HEAD]
|
| 181 |
+
q_batch_offset = batch_id * N_HEADS * Q_D_HEAD
|
| 182 |
+
q_head_offsets = head_offsets * Q_D_HEAD
|
| 183 |
+
|
| 184 |
+
# Q layout : BSND
|
| 185 |
+
q = tl.load(
|
| 186 |
+
q_ptr + q_batch_offset + q_head_offsets[:, None] + q_dhead_offsets[None, :],
|
| 187 |
+
mask=head_mask[:, None] * q_dhead_mask[None, :],
|
| 188 |
+
other=0.0,
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# [BSND]
|
| 192 |
+
k_block_offsets = (
|
| 193 |
+
batch_offset * K_D_HEAD
|
| 194 |
+
+ seq_offsets[:, None] * K_D_HEAD * N_KV_HEADS
|
| 195 |
+
+ kv_head_id * K_D_HEAD
|
| 196 |
+
+ q_dhead_offsets[None, :]
|
| 197 |
+
)
|
| 198 |
+
k_mask = seq_mask[:, None] * q_dhead_mask[None, :] # K and Q share the same head dim
|
| 199 |
+
k = tl.load(k_cache_ptr + k_block_offsets, mask=k_mask, other=0.0)
|
| 200 |
+
|
| 201 |
+
v_block_offsets = (
|
| 202 |
+
batch_offset * V_D_HEAD
|
| 203 |
+
+ seq_offsets[:, None] * V_D_HEAD * N_KV_HEADS
|
| 204 |
+
+ kv_head_id * V_D_HEAD
|
| 205 |
+
+ v_dhead_offsets[None, :]
|
| 206 |
+
)
|
| 207 |
+
v_mask = seq_mask[:, None] * v_dhead_mask[None, :]
|
| 208 |
+
|
| 209 |
+
# [seq_block, V_D_HEAD]
|
| 210 |
+
v = tl.load(v_cache_ptr + v_block_offsets, mask=v_mask, other=0.0)
|
| 211 |
+
|
| 212 |
+
# Note: check the output precision of the sum.
|
| 213 |
+
# compute q*K^T
|
| 214 |
+
# [NUM_HEADS, Q_D_HEAD] * [seq_block, Q_D_HEAD], sum along axis 1
|
| 215 |
+
attn = tl.dot(q, k.trans()) # [N, seq_block]
|
| 216 |
+
attn = attn.to(tl.float32)
|
| 217 |
+
attn *= sm_scale
|
| 218 |
+
max_attn = tl.max(attn, axis=1) # [N, 1]
|
| 219 |
+
# Set to -inf attn values where mask is not set. This forces exp(attn) to 0.
|
| 220 |
+
attn = tl.where(head_mask[:, None] * seq_mask[None, :], attn, float("-inf"))
|
| 221 |
+
exp_attn = tl.exp(attn - max_attn[:, None])
|
| 222 |
+
|
| 223 |
+
sumexp = tl.sum(exp_attn, axis=1) # [N, 1]
|
| 224 |
+
|
| 225 |
+
# [NUM_HEADS, seq_len] * [seq_len, V_D_HEAD], sum along axis 0
|
| 226 |
+
output = tl.dot(exp_attn.to(v.dtype), v)
|
| 227 |
+
|
| 228 |
+
output = output / sumexp[:, None] # [N, D_HEAD]
|
| 229 |
+
|
| 230 |
+
# We store the log-sum-exp after removing the max.
|
| 231 |
+
logsumexp = tl.log(sumexp) + max_attn
|
| 232 |
+
# when seq_mask is all false, max_attn will be -inf and sumexp is zero
|
| 233 |
+
|
| 234 |
+
tl.store(
|
| 235 |
+
output_values_ptr
|
| 236 |
+
+ batch_id * N_HEADS * V_D_HEAD * num_blocks
|
| 237 |
+
+ head_offsets[:, None] * V_D_HEAD * num_blocks
|
| 238 |
+
+ seq_block_id * V_D_HEAD
|
| 239 |
+
+ v_dhead_offsets[None, :],
|
| 240 |
+
output,
|
| 241 |
+
mask=head_mask[:, None] * v_dhead_mask[None, :],
|
| 242 |
+
)
|
| 243 |
+
tl.store(
|
| 244 |
+
output_logsumexp_ptr
|
| 245 |
+
+ batch_id * N_HEADS * num_blocks
|
| 246 |
+
+ head_offsets * num_blocks
|
| 247 |
+
+ seq_block_id,
|
| 248 |
+
logsumexp,
|
| 249 |
+
mask=head_mask,
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
@triton.jit
|
| 254 |
+
def attention_kv_stage1(
|
| 255 |
+
q_ptr, # [Batch, 1, N_HEADS, D_HEAD]
|
| 256 |
+
k_cache_ptr, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD]
|
| 257 |
+
v_cache_ptr, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD]
|
| 258 |
+
cache_loc_ptr, # [Batch] # Specifies the batch index for each of the generate tokens.
|
| 259 |
+
input_pos_ptr, # [Batch]
|
| 260 |
+
output_values_ptr, # [Batch, N_HEADS, num_blocks, D_HEAD]
|
| 261 |
+
output_logsumexp_ptr, # [Batch, N_HEADS, num_blocks]
|
| 262 |
+
num_blocks,
|
| 263 |
+
MAX_SEQ_LEN: tl.constexpr, # Maximum supported sequence length
|
| 264 |
+
N_HEADS: tl.constexpr, # Number of heads
|
| 265 |
+
N_KV_HEADS: tl.constexpr, # Number of KV heads.
|
| 266 |
+
D_HEAD: tl.constexpr, # Dimension of each head.
|
| 267 |
+
SEQ_BLOCK_SIZE: tl.constexpr, # Block size used for tiling the sequence dim.
|
| 268 |
+
):
|
| 269 |
+
"""Attention kernel to be used for generate-only batches.
|
| 270 |
+
|
| 271 |
+
Assumes that kv caches have been updated.
|
| 272 |
+
|
| 273 |
+
Uses flash decoding.
|
| 274 |
+
KV-cache layout is assumed to be [Batch,Seq, Head, Dim]
|
| 275 |
+
1. Fetch the K-cache from 0 to input_pos
|
| 276 |
+
2. Fetch the V-cache from 0 to input_pos
|
| 277 |
+
3. A = Q*K^T [1,D_HEAD] * [1,seq_len,D_HEAD] -> [1, seq_len]
|
| 278 |
+
4. S = softmax(A)
|
| 279 |
+
5. O = S*V [1, seq_len] * [1, seq_len, D_HEAD] -> [1, D_HEAD]
|
| 280 |
+
"""
|
| 281 |
+
# Assume KV-cache layout: [Batch, Seq, Head, Dim]
|
| 282 |
+
# A program is responsible for 1 batch, 1 head and a block of sequences.
|
| 283 |
+
batch_id = tl.program_id(axis=0)
|
| 284 |
+
head_id = tl.program_id(axis=1)
|
| 285 |
+
seq_block_id = tl.program_id(axis=2)
|
| 286 |
+
epsilon: tl.constexpr = 1e-38 # float32 smallest positive number
|
| 287 |
+
|
| 288 |
+
kv_position = tl.load(input_pos_ptr + batch_id)
|
| 289 |
+
kv_batch_id = tl.load(cache_loc_ptr + batch_id)
|
| 290 |
+
kv_batch_offset = kv_batch_id * N_KV_HEADS * MAX_SEQ_LEN * D_HEAD
|
| 291 |
+
# Offsets for the block of sequences this program processes.
|
| 292 |
+
seq_start_pos = seq_block_id * SEQ_BLOCK_SIZE
|
| 293 |
+
|
| 294 |
+
if seq_start_pos > kv_position:
|
| 295 |
+
return
|
| 296 |
+
seq_offsets = seq_start_pos + tl.arange(0, SEQ_BLOCK_SIZE)
|
| 297 |
+
seq_mask = seq_offsets <= kv_position
|
| 298 |
+
# Assuming D_HEAD is a power of 2
|
| 299 |
+
dhead_offsets = tl.arange(0, triton.next_power_of_2(D_HEAD))
|
| 300 |
+
dhead_mask = dhead_offsets < D_HEAD
|
| 301 |
+
|
| 302 |
+
HEAD_RATIO: tl.constexpr = N_HEADS // N_KV_HEADS
|
| 303 |
+
kv_head_offset = (head_id // HEAD_RATIO) * D_HEAD
|
| 304 |
+
|
| 305 |
+
sm_scale: tl.constexpr = 1.0 / (D_HEAD**0.5)
|
| 306 |
+
|
| 307 |
+
# Program loads the entire Q for the head assigned to it.
|
| 308 |
+
# [D_HEAD]
|
| 309 |
+
q_batch_offset = batch_id * N_HEADS * D_HEAD
|
| 310 |
+
q_head_offset = head_id * D_HEAD
|
| 311 |
+
q = tl.load(q_ptr + q_batch_offset + q_head_offset + dhead_offsets, mask=dhead_mask)
|
| 312 |
+
|
| 313 |
+
kv_block_offsets = (
|
| 314 |
+
kv_batch_offset
|
| 315 |
+
+ seq_offsets[:, None] * D_HEAD * N_KV_HEADS
|
| 316 |
+
+ kv_head_offset
|
| 317 |
+
+ dhead_offsets[None, :]
|
| 318 |
+
) # [BSND]
|
| 319 |
+
kv_mask = seq_mask[:, None] * dhead_mask[None, :]
|
| 320 |
+
|
| 321 |
+
# [seq_block, D_HEAD]
|
| 322 |
+
k = tl.load(k_cache_ptr + kv_block_offsets, mask=kv_mask, other=0.0)
|
| 323 |
+
v = tl.load(v_cache_ptr + kv_block_offsets, mask=kv_mask, other=0.0)
|
| 324 |
+
|
| 325 |
+
# Note: check the output precision of the sum.
|
| 326 |
+
# compute q*K^T
|
| 327 |
+
# [D_HEAD] * [seq_block, D_HEAD], sum along axis 1
|
| 328 |
+
attn = tl.sum(q[None, :].to(tl.float32) * k.to(tl.float32), axis=1) # [seq_block]
|
| 329 |
+
|
| 330 |
+
attn *= sm_scale
|
| 331 |
+
max_attn = tl.max(attn)
|
| 332 |
+
# Set to -inf attn values where mask is not set. This forces exp(attn) to 0.
|
| 333 |
+
attn = tl.where(seq_mask, attn, float("-inf"))
|
| 334 |
+
exp_attn = tl.exp(attn - max_attn)
|
| 335 |
+
exp_attn = tl.where(exp_attn == 0, epsilon, exp_attn)
|
| 336 |
+
sumexp = tl.sum(exp_attn, axis=0) # scalar.
|
| 337 |
+
|
| 338 |
+
# [seq_len] * [seq_len, D_HEAD], sum along axis 0
|
| 339 |
+
output = tl.sum(exp_attn[:, None] * v, axis=0) # [D_HEAD]
|
| 340 |
+
|
| 341 |
+
output = output / sumexp
|
| 342 |
+
|
| 343 |
+
# We store the log-sum-exp after removing the max.
|
| 344 |
+
logsumexp = tl.log(sumexp) + max_attn
|
| 345 |
+
# when seq_mask is all false, max_attn will be -inf and sumexp is zero
|
| 346 |
+
|
| 347 |
+
tl.store(
|
| 348 |
+
output_values_ptr
|
| 349 |
+
+ batch_id * N_HEADS * D_HEAD * num_blocks
|
| 350 |
+
+ head_id * D_HEAD * num_blocks
|
| 351 |
+
+ seq_block_id * D_HEAD
|
| 352 |
+
+ dhead_offsets,
|
| 353 |
+
output,
|
| 354 |
+
mask=dhead_mask,
|
| 355 |
+
)
|
| 356 |
+
tl.store(
|
| 357 |
+
output_logsumexp_ptr
|
| 358 |
+
+ batch_id * N_HEADS * num_blocks
|
| 359 |
+
+ head_id * num_blocks
|
| 360 |
+
+ seq_block_id,
|
| 361 |
+
logsumexp,
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
@triton.jit
|
| 366 |
+
def attention_kv_stage2(
|
| 367 |
+
values_ptr, # [Batch, N_HEADS, num_blocks, D_HEAD]
|
| 368 |
+
logsumexp_ptr, # [Batch, N_HEADS, num_blocks]
|
| 369 |
+
output_ptr, # [Batch, N_HEADS, D_HEAD]
|
| 370 |
+
input_pos_ptr,
|
| 371 |
+
NUM_BLOCKS: tl.constexpr,
|
| 372 |
+
N_HEADS: tl.constexpr,
|
| 373 |
+
D_HEAD: tl.constexpr,
|
| 374 |
+
SEQ_BLOCK_SIZE: tl.constexpr, # Nearest power of 2 for num_blocks
|
| 375 |
+
):
|
| 376 |
+
# There are batch * N_HEADS programs
|
| 377 |
+
batch_id = tl.program_id(axis=0)
|
| 378 |
+
head_id = tl.program_id(axis=1)
|
| 379 |
+
|
| 380 |
+
dhead_offsets = tl.arange(0, triton.next_power_of_2(D_HEAD))
|
| 381 |
+
dhead_mask = dhead_offsets < D_HEAD
|
| 382 |
+
|
| 383 |
+
kv_position = tl.load(input_pos_ptr + batch_id)
|
| 384 |
+
block_id = kv_position // SEQ_BLOCK_SIZE + 1
|
| 385 |
+
|
| 386 |
+
NUM_BLOCKS_POW2: tl.constexpr = triton.next_power_of_2(NUM_BLOCKS)
|
| 387 |
+
block_offsets = tl.arange(0, NUM_BLOCKS_POW2)
|
| 388 |
+
|
| 389 |
+
block_mask = block_offsets < block_id
|
| 390 |
+
logsumexp = tl.load(
|
| 391 |
+
logsumexp_ptr + batch_id * N_HEADS * NUM_BLOCKS + head_id * NUM_BLOCKS + block_offsets,
|
| 392 |
+
mask=block_mask,
|
| 393 |
+
other=float("-inf"),
|
| 394 |
+
)
|
| 395 |
+
max_logsumexp = tl.max(logsumexp)
|
| 396 |
+
sumexp = tl.exp(logsumexp - max_logsumexp) # [NUM_BLOCKS_POW2]
|
| 397 |
+
|
| 398 |
+
aggregate_sumexp = tl.sum(sumexp, axis=0)
|
| 399 |
+
|
| 400 |
+
values_offsets = block_offsets[:, None] * D_HEAD + dhead_offsets[None, :]
|
| 401 |
+
values_mask = block_mask[:, None] * dhead_mask[None, :]
|
| 402 |
+
|
| 403 |
+
values = tl.load(
|
| 404 |
+
values_ptr
|
| 405 |
+
+ batch_id * N_HEADS * D_HEAD * NUM_BLOCKS
|
| 406 |
+
+ head_id * D_HEAD * NUM_BLOCKS
|
| 407 |
+
+ values_offsets,
|
| 408 |
+
mask=values_mask,
|
| 409 |
+
other=0.0,
|
| 410 |
+
) # [BLOCK_SIZE, D_HEAD]
|
| 411 |
+
values *= sumexp[:, None]
|
| 412 |
+
values /= aggregate_sumexp
|
| 413 |
+
|
| 414 |
+
output = tl.sum(values, axis=0) # [DHEAD]
|
| 415 |
+
|
| 416 |
+
tl.store(
|
| 417 |
+
output_ptr + batch_id * N_HEADS * D_HEAD + head_id * D_HEAD + dhead_offsets,
|
| 418 |
+
output,
|
| 419 |
+
mask=dhead_mask,
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
@triton.jit
|
| 424 |
+
def context_attention_kv(
|
| 425 |
+
q_ptr, # [bsnd]
|
| 426 |
+
k_ptr, # [bsnd]
|
| 427 |
+
v_ptr, # [bsnd]
|
| 428 |
+
k_cache_ptr, # [bsnd]
|
| 429 |
+
v_cache_ptr, # [bsnd]
|
| 430 |
+
seq_len,
|
| 431 |
+
o_ptr,
|
| 432 |
+
softmax_scale,
|
| 433 |
+
N_HEADS: tl.constexpr, # Number of heads
|
| 434 |
+
N_KV_HEADS: tl.constexpr, # Number of KV heads.
|
| 435 |
+
Q_D_HEAD: tl.constexpr, # Dimension of each query head.
|
| 436 |
+
V_D_HEAD: tl.constexpr, # Dimension of each value head.
|
| 437 |
+
SEQ_BLOCK: tl.constexpr,
|
| 438 |
+
MAX_SEQ_LENGTH: tl.constexpr,
|
| 439 |
+
):
|
| 440 |
+
"""Kernel for context phase.
|
| 441 |
+
|
| 442 |
+
Assuming:
|
| 443 |
+
1. Self-attention [seqlen(Q) == seqlen(K)]
|
| 444 |
+
2. Causal attention
|
| 445 |
+
3. QKV layout: [bsnd]
|
| 446 |
+
"""
|
| 447 |
+
batch_id = tl.program_id(axis=0)
|
| 448 |
+
head_id = tl.program_id(axis=1)
|
| 449 |
+
seq_block_id = tl.program_id(axis=2)
|
| 450 |
+
|
| 451 |
+
HEAD_RATIO: tl.constexpr = N_HEADS // N_KV_HEADS
|
| 452 |
+
K_D_HEAD: tl.constexpr = Q_D_HEAD
|
| 453 |
+
|
| 454 |
+
q_dhead_offsets = tl.arange(0, triton.next_power_of_2(Q_D_HEAD))
|
| 455 |
+
q_dhead_mask = q_dhead_offsets < Q_D_HEAD
|
| 456 |
+
|
| 457 |
+
v_dhead_offsets = tl.arange(0, triton.next_power_of_2(V_D_HEAD))
|
| 458 |
+
v_dhead_mask = v_dhead_offsets < V_D_HEAD
|
| 459 |
+
|
| 460 |
+
seq_offsets = seq_block_id * SEQ_BLOCK + tl.arange(0, SEQ_BLOCK)
|
| 461 |
+
seq_mask = seq_offsets < seq_len
|
| 462 |
+
|
| 463 |
+
q_load_mask = seq_mask[:, None] * q_dhead_mask[None, :]
|
| 464 |
+
|
| 465 |
+
q_batch_offset = batch_id * seq_len * N_HEADS
|
| 466 |
+
kv_batch_offset = batch_id * seq_len * N_KV_HEADS
|
| 467 |
+
|
| 468 |
+
k_head_offset = (head_id // HEAD_RATIO) * K_D_HEAD
|
| 469 |
+
v_head_offset = (head_id // HEAD_RATIO) * V_D_HEAD
|
| 470 |
+
|
| 471 |
+
# Q will stay in SRAM
|
| 472 |
+
q = tl.load(
|
| 473 |
+
q_ptr
|
| 474 |
+
+ q_batch_offset * Q_D_HEAD
|
| 475 |
+
+ seq_offsets[:, None] * N_HEADS * Q_D_HEAD
|
| 476 |
+
+ head_id * Q_D_HEAD
|
| 477 |
+
+ q_dhead_offsets[None, :],
|
| 478 |
+
mask=q_load_mask,
|
| 479 |
+
)
|
| 480 |
+
acc = tl.zeros([SEQ_BLOCK, triton.next_power_of_2(V_D_HEAD)], dtype=tl.float32)
|
| 481 |
+
lse_i = tl.zeros([SEQ_BLOCK], dtype=tl.float32) - float("inf")
|
| 482 |
+
m_i = tl.zeros([SEQ_BLOCK], dtype=tl.float32) - float("inf")
|
| 483 |
+
|
| 484 |
+
for s in range(0, seq_block_id + 1, 1):
|
| 485 |
+
kv_seq_offsets = s * SEQ_BLOCK + tl.arange(0, SEQ_BLOCK)
|
| 486 |
+
kv_seq_mask = kv_seq_offsets < seq_len
|
| 487 |
+
k_load_mask = kv_seq_mask[:, None] * q_dhead_mask[None, :]
|
| 488 |
+
|
| 489 |
+
k = tl.load(
|
| 490 |
+
k_ptr
|
| 491 |
+
+ kv_batch_offset * K_D_HEAD
|
| 492 |
+
+ kv_seq_offsets[:, None] * N_KV_HEADS * K_D_HEAD
|
| 493 |
+
+ k_head_offset
|
| 494 |
+
+ q_dhead_offsets[None, :],
|
| 495 |
+
mask=k_load_mask,
|
| 496 |
+
)
|
| 497 |
+
qk = tl.zeros([SEQ_BLOCK, SEQ_BLOCK], dtype=tl.float32)
|
| 498 |
+
qk += tl.dot(q, k.trans())
|
| 499 |
+
# causal mask
|
| 500 |
+
qk = tl.where(seq_offsets[:, None] >= kv_seq_offsets[None, :], qk, float("-inf"))
|
| 501 |
+
qk *= softmax_scale
|
| 502 |
+
# rowmax
|
| 503 |
+
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
| 504 |
+
p = tl.exp(qk - m_ij[:, None]) # [S,S]
|
| 505 |
+
v = tl.load(
|
| 506 |
+
v_ptr
|
| 507 |
+
+ kv_batch_offset * V_D_HEAD
|
| 508 |
+
+ kv_seq_offsets[:, None] * N_KV_HEADS * V_D_HEAD
|
| 509 |
+
+ v_head_offset
|
| 510 |
+
+ v_dhead_offsets[None, :],
|
| 511 |
+
mask=kv_seq_mask[:, None] * v_dhead_mask[None, :],
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
l_ij = tl.sum(p, 1)
|
| 515 |
+
acc_scale = tl.exp(m_i - m_ij)
|
| 516 |
+
acc = acc * acc_scale[:, None]
|
| 517 |
+
p = p.to(v.dtype)
|
| 518 |
+
acc += tl.dot(p, v)
|
| 519 |
+
m_i = m_ij
|
| 520 |
+
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
| 521 |
+
lse_i = m_ij + tl.log(l_i_new)
|
| 522 |
+
|
| 523 |
+
o_scale = tl.exp(m_i - lse_i)
|
| 524 |
+
|
| 525 |
+
acc = acc * o_scale[:, None]
|
| 526 |
+
|
| 527 |
+
tl.store(
|
| 528 |
+
o_ptr
|
| 529 |
+
+ batch_id * seq_len * N_HEADS * V_D_HEAD
|
| 530 |
+
+ seq_offsets[:, None] * N_HEADS * V_D_HEAD
|
| 531 |
+
+ head_id * V_D_HEAD
|
| 532 |
+
+ v_dhead_offsets[None, :],
|
| 533 |
+
acc,
|
| 534 |
+
mask=seq_mask[:, None] * v_dhead_mask[None, :],
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
# Write back to kv-caches
|
| 538 |
+
|
| 539 |
+
ks = tl.load(
|
| 540 |
+
k_ptr
|
| 541 |
+
+ kv_batch_offset * K_D_HEAD
|
| 542 |
+
+ seq_offsets[:, None] * N_KV_HEADS * K_D_HEAD
|
| 543 |
+
+ k_head_offset
|
| 544 |
+
+ q_dhead_offsets[None, :],
|
| 545 |
+
mask=seq_mask[:, None] * q_dhead_mask[None, :],
|
| 546 |
+
)
|
| 547 |
+
vs = tl.load(
|
| 548 |
+
v_ptr
|
| 549 |
+
+ kv_batch_offset * V_D_HEAD
|
| 550 |
+
+ seq_offsets[:, None] * N_KV_HEADS * V_D_HEAD
|
| 551 |
+
+ v_head_offset
|
| 552 |
+
+ v_dhead_offsets[None, :],
|
| 553 |
+
mask=seq_mask[:, None] * v_dhead_mask[None, :],
|
| 554 |
+
)
|
| 555 |
+
# cache is [bsnd]
|
| 556 |
+
k_cache_offset = (
|
| 557 |
+
batch_id * N_KV_HEADS * MAX_SEQ_LENGTH * K_D_HEAD
|
| 558 |
+
+ seq_offsets[:, None] * K_D_HEAD * N_KV_HEADS
|
| 559 |
+
+ k_head_offset
|
| 560 |
+
+ q_dhead_offsets[None, :]
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
v_cache_offset = (
|
| 564 |
+
batch_id * N_KV_HEADS * MAX_SEQ_LENGTH * V_D_HEAD
|
| 565 |
+
+ seq_offsets[:, None] * V_D_HEAD * N_KV_HEADS
|
| 566 |
+
+ v_head_offset
|
| 567 |
+
+ v_dhead_offsets[None, :]
|
| 568 |
+
)
|
| 569 |
+
tl.store(k_cache_ptr + k_cache_offset, ks, seq_mask[:, None] * q_dhead_mask[None, :])
|
| 570 |
+
tl.store(v_cache_ptr + v_cache_offset, vs, seq_mask[:, None] * v_dhead_mask[None, :])
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
@triton.jit
|
| 574 |
+
def context_attention_kv_flattened(
|
| 575 |
+
q_ptr, # [b*s,nd]
|
| 576 |
+
seq_len_ptr, # [b] # length of each sequence in a batch
|
| 577 |
+
seq_start_indices_ptr, # [b] # start indices of a sequence in flattened q/k/v.
|
| 578 |
+
k_cache_ptr, # [bsnd]
|
| 579 |
+
v_cache_ptr, # [bsnd]
|
| 580 |
+
input_pos_ptr, # [b] # specifies the location in the sequence where kv must be written back.
|
| 581 |
+
cache_loc_ptr, # [b] # location of the sequence in the cache.
|
| 582 |
+
o_ptr,
|
| 583 |
+
softmax_scale: tl.constexpr,
|
| 584 |
+
N_HEADS: tl.constexpr, # Number of heads
|
| 585 |
+
N_KV_HEADS: tl.constexpr, # Number of KV heads.
|
| 586 |
+
Q_D_HEAD: tl.constexpr, # Dimension of each query head.
|
| 587 |
+
V_D_HEAD: tl.constexpr, # Dimension of each value head.
|
| 588 |
+
SEQ_BLOCK: tl.constexpr,
|
| 589 |
+
MAX_SEQ_LENGTH: tl.constexpr,
|
| 590 |
+
):
|
| 591 |
+
"""Kernel for context phase.
|
| 592 |
+
|
| 593 |
+
Assumes that kv caches have been updated.
|
| 594 |
+
Assuming QKV layout: [b*s,n,d]
|
| 595 |
+
"""
|
| 596 |
+
batch_id = tl.program_id(axis=0)
|
| 597 |
+
head_id = tl.program_id(axis=1)
|
| 598 |
+
seq_block_id = tl.program_id(axis=2)
|
| 599 |
+
|
| 600 |
+
# Each program is responsible for a block of tokens in a single batch.
|
| 601 |
+
seq_start_index = tl.load(seq_start_indices_ptr + batch_id)
|
| 602 |
+
seq_len = tl.load(seq_len_ptr + batch_id)
|
| 603 |
+
K_D_HEAD: tl.constexpr = Q_D_HEAD
|
| 604 |
+
HEAD_RATIO: tl.constexpr = N_HEADS // N_KV_HEADS
|
| 605 |
+
|
| 606 |
+
# cache is [bsnd]
|
| 607 |
+
# cache_loc_ptr stores the batch index for the sequences provided to the kernel.
|
| 608 |
+
cache_loc = tl.load(cache_loc_ptr + batch_id)
|
| 609 |
+
|
| 610 |
+
cache_batch_offset = cache_loc * N_KV_HEADS * MAX_SEQ_LENGTH
|
| 611 |
+
cache_head_offset = head_id // HEAD_RATIO
|
| 612 |
+
|
| 613 |
+
q_dhead_offsets = tl.arange(0, triton.next_power_of_2(Q_D_HEAD))
|
| 614 |
+
q_dhead_mask = q_dhead_offsets < Q_D_HEAD
|
| 615 |
+
|
| 616 |
+
v_dhead_offsets = tl.arange(0, triton.next_power_of_2(V_D_HEAD))
|
| 617 |
+
v_dhead_mask = v_dhead_offsets < V_D_HEAD
|
| 618 |
+
|
| 619 |
+
seq_offsets = seq_block_id * SEQ_BLOCK + tl.arange(0, SEQ_BLOCK)
|
| 620 |
+
seq_mask = seq_offsets < seq_len
|
| 621 |
+
|
| 622 |
+
# Q will stay in SRAM
|
| 623 |
+
q = tl.load(
|
| 624 |
+
q_ptr
|
| 625 |
+
+ seq_start_index * N_HEADS * Q_D_HEAD
|
| 626 |
+
+ seq_offsets[:, None] * N_HEADS * Q_D_HEAD
|
| 627 |
+
+ head_id * Q_D_HEAD
|
| 628 |
+
+ q_dhead_offsets[None, :],
|
| 629 |
+
mask=seq_mask[:, None] * q_dhead_mask[None, :],
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
acc = tl.zeros([SEQ_BLOCK, triton.next_power_of_2(V_D_HEAD)], dtype=tl.float32)
|
| 633 |
+
lse_i = tl.zeros([SEQ_BLOCK], dtype=tl.float32) - float("inf")
|
| 634 |
+
m_i = tl.zeros([SEQ_BLOCK], dtype=tl.float32) - float("inf")
|
| 635 |
+
|
| 636 |
+
# Loop over the entire KV-history
|
| 637 |
+
# input_pos_ptr stores the location at which kv must be written back for the given batch.
|
| 638 |
+
kv_position = tl.load(input_pos_ptr + batch_id)
|
| 639 |
+
num_blocks = (kv_position + seq_len + SEQ_BLOCK - 1) // SEQ_BLOCK
|
| 640 |
+
for s in range(0, num_blocks + 1, 1):
|
| 641 |
+
kv_seq_offsets = s * SEQ_BLOCK + tl.arange(0, SEQ_BLOCK)
|
| 642 |
+
kv_seq_mask = kv_seq_offsets < (kv_position + seq_len)
|
| 643 |
+
|
| 644 |
+
k = tl.load(
|
| 645 |
+
k_cache_ptr
|
| 646 |
+
+ cache_batch_offset * K_D_HEAD
|
| 647 |
+
+ kv_seq_offsets[:, None] * K_D_HEAD * N_KV_HEADS
|
| 648 |
+
+ cache_head_offset * K_D_HEAD
|
| 649 |
+
+ q_dhead_offsets[None, :],
|
| 650 |
+
mask=kv_seq_mask[:, None] * q_dhead_mask[None, :],
|
| 651 |
+
)
|
| 652 |
+
qk = tl.zeros([SEQ_BLOCK, SEQ_BLOCK], dtype=tl.float32)
|
| 653 |
+
qk += tl.dot(q, k.trans())
|
| 654 |
+
qk = tl.where(
|
| 655 |
+
(seq_offsets[:, None] + kv_position) >= kv_seq_offsets[None, :], qk, float("-inf")
|
| 656 |
+
)
|
| 657 |
+
qk *= softmax_scale
|
| 658 |
+
# rowmax
|
| 659 |
+
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
| 660 |
+
p = tl.exp(qk - m_ij[:, None])
|
| 661 |
+
v = tl.load(
|
| 662 |
+
v_cache_ptr
|
| 663 |
+
+ cache_batch_offset * V_D_HEAD
|
| 664 |
+
+ kv_seq_offsets[:, None] * V_D_HEAD * N_KV_HEADS
|
| 665 |
+
+ cache_head_offset * V_D_HEAD
|
| 666 |
+
+ v_dhead_offsets[None, :],
|
| 667 |
+
mask=kv_seq_mask[:, None] * v_dhead_mask[None, :],
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
l_ij = tl.sum(p, 1)
|
| 671 |
+
acc_scale = tl.exp(m_i - m_ij)
|
| 672 |
+
acc = acc * acc_scale[:, None]
|
| 673 |
+
p = p.to(v.dtype)
|
| 674 |
+
acc += tl.dot(p, v)
|
| 675 |
+
m_i = m_ij
|
| 676 |
+
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
| 677 |
+
lse_i = m_ij + tl.log(l_i_new)
|
| 678 |
+
|
| 679 |
+
o_scale = tl.exp(m_i - lse_i)
|
| 680 |
+
|
| 681 |
+
acc = acc * o_scale[:, None]
|
| 682 |
+
|
| 683 |
+
tl.store(
|
| 684 |
+
o_ptr
|
| 685 |
+
+ seq_start_index * N_HEADS * V_D_HEAD
|
| 686 |
+
+ seq_offsets[:, None] * N_HEADS * V_D_HEAD
|
| 687 |
+
+ head_id * V_D_HEAD
|
| 688 |
+
+ v_dhead_offsets[None, :],
|
| 689 |
+
acc,
|
| 690 |
+
mask=seq_mask[:, None] * v_dhead_mask[None, :],
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
@triton.jit
|
| 695 |
+
def update_kv_cache_rope_fusion(
|
| 696 |
+
q_ptr, # [B*S, N, D]
|
| 697 |
+
k_ptr, # [B*S, N, D]
|
| 698 |
+
v_ptr, # [B*S, N, D]
|
| 699 |
+
seq_len_ptr, # [b] # length of each sequence in a batch
|
| 700 |
+
seq_start_indices_ptr, # [b] # start indices of a sequence in flattened q/k/v.
|
| 701 |
+
q_rope_ptr, # [B*S, N, D], roped q result
|
| 702 |
+
k_cache_ptr, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD]
|
| 703 |
+
v_cache_ptr, # [MAX_BATCH_SIZE, MAX_SEQ_LEN, N_HEADS, D_HEAD]
|
| 704 |
+
input_pos_ptr, # Specifies the sequence index in the caches at which to write the provided kv
|
| 705 |
+
cache_loc_ptr, # Specifies the batch index for each of the input sequences
|
| 706 |
+
f_ptr, # [MAX_SEQ_LEN, D_HEAD//2, 2] # frequencies for rope embadding.
|
| 707 |
+
MAX_SEQ_LENGTH: tl.constexpr,
|
| 708 |
+
N_HEADS: tl.constexpr,
|
| 709 |
+
N_KV_HEADS: tl.constexpr,
|
| 710 |
+
D_HEAD: tl.constexpr,
|
| 711 |
+
SEQ_BLOCK: tl.constexpr,
|
| 712 |
+
HEAD_BLOCK_SIZE: tl.constexpr, # pad to 16 if HEAD_RATIO is < 16 to invoke tensor cores.
|
| 713 |
+
GENERATE_ONLY: tl.constexpr,
|
| 714 |
+
):
|
| 715 |
+
"""Fuse q and k rope with update_kv_cache kernel.
|
| 716 |
+
|
| 717 |
+
The input is interleaved as [2, D//2] in D_HEAD dim.
|
| 718 |
+
Update q_rope with the post-rope-embadding q values.
|
| 719 |
+
Update k_cache with the post-rope-embadding k values.
|
| 720 |
+
For rope computation, q and k need to load and store in tensors pair of 2 * [D//2].
|
| 721 |
+
Update v_cache with v.
|
| 722 |
+
"""
|
| 723 |
+
batch_id = tl.program_id(axis=0)
|
| 724 |
+
kv_head_id = tl.program_id(axis=1)
|
| 725 |
+
seq_block_id = tl.program_id(axis=2)
|
| 726 |
+
|
| 727 |
+
# Each program is responsible for a block of tokens in a single batch.
|
| 728 |
+
if GENERATE_ONLY:
|
| 729 |
+
seq_start_index = batch_id
|
| 730 |
+
seq_len: tl.constexpr = 1
|
| 731 |
+
else:
|
| 732 |
+
seq_start_index = tl.load(seq_start_indices_ptr + batch_id)
|
| 733 |
+
seq_len = tl.load(seq_len_ptr + batch_id)
|
| 734 |
+
|
| 735 |
+
# cache is [bsnd]
|
| 736 |
+
# cache_loc_ptr stores the batch index for the sequences provided to the kernel.
|
| 737 |
+
cache_loc = tl.load(cache_loc_ptr + batch_id)
|
| 738 |
+
|
| 739 |
+
kv_position = tl.load(input_pos_ptr + batch_id)
|
| 740 |
+
|
| 741 |
+
cache_batch_offset = cache_loc * N_KV_HEADS * MAX_SEQ_LENGTH * D_HEAD
|
| 742 |
+
cache_head_offset = kv_head_id * D_HEAD
|
| 743 |
+
|
| 744 |
+
# Assuming D_HEAD is a power of 2
|
| 745 |
+
dhead_offsets = tl.arange(0, D_HEAD)
|
| 746 |
+
dhead_mask = dhead_offsets < D_HEAD
|
| 747 |
+
|
| 748 |
+
seq_offsets = seq_block_id * SEQ_BLOCK + tl.arange(0, SEQ_BLOCK)
|
| 749 |
+
seq_mask = seq_offsets < seq_len
|
| 750 |
+
|
| 751 |
+
load_mask = seq_mask[:, None] * dhead_mask[None, :]
|
| 752 |
+
|
| 753 |
+
HEAD_RATIO: tl.constexpr = N_HEADS // N_KV_HEADS # This needs to be a power-of-2
|
| 754 |
+
q_head_offsets = kv_head_id * HEAD_RATIO + tl.arange(0, HEAD_BLOCK_SIZE)
|
| 755 |
+
q_head_mask = q_head_offsets < (kv_head_id * HEAD_RATIO + HEAD_RATIO)
|
| 756 |
+
|
| 757 |
+
q_batch_offset = seq_start_index * N_HEADS * D_HEAD
|
| 758 |
+
|
| 759 |
+
kv_batch_offset = seq_start_index * N_KV_HEADS * D_HEAD
|
| 760 |
+
kv_head_offset = cache_head_offset
|
| 761 |
+
|
| 762 |
+
D2: tl.constexpr = D_HEAD // 2
|
| 763 |
+
# input is interleaved as [2, D//2] in dim [D_HEAD].
|
| 764 |
+
d2_offsets = tl.arange(0, D2)
|
| 765 |
+
dhead_offsets1 = d2_offsets
|
| 766 |
+
dhead_offsets2 = d2_offsets + D2
|
| 767 |
+
d2_mask = dhead_offsets2 < D_HEAD
|
| 768 |
+
d2_load_mask = seq_mask[:, None] * d2_mask[None, :]
|
| 769 |
+
|
| 770 |
+
# offsets of [bsn]
|
| 771 |
+
q_offsets_base = (
|
| 772 |
+
q_batch_offset
|
| 773 |
+
+ seq_offsets[:, None, None] * N_HEADS * D_HEAD
|
| 774 |
+
+ q_head_offsets[None, :, None] * D_HEAD
|
| 775 |
+
)
|
| 776 |
+
q_offsets1 = q_offsets_base + dhead_offsets1[None, None, :]
|
| 777 |
+
q_offsets2 = q_offsets_base + dhead_offsets2[None, None, :]
|
| 778 |
+
q_mask = d2_load_mask[:, None, :] * q_head_mask[None, :, None]
|
| 779 |
+
|
| 780 |
+
q1 = tl.load(q_ptr + q_offsets1, mask=q_mask).to(tl.float32)
|
| 781 |
+
q2 = tl.load(q_ptr + q_offsets2, mask=q_mask).to(tl.float32)
|
| 782 |
+
|
| 783 |
+
k_offsets_base = kv_batch_offset + seq_offsets[:, None] * N_KV_HEADS * D_HEAD + kv_head_offset
|
| 784 |
+
k_offsets1 = k_offsets_base + dhead_offsets1[None, :]
|
| 785 |
+
k_offsets2 = k_offsets_base + dhead_offsets2[None, :]
|
| 786 |
+
|
| 787 |
+
k1 = tl.load(k_ptr + k_offsets1, mask=d2_load_mask).to(tl.float32)
|
| 788 |
+
k2 = tl.load(k_ptr + k_offsets2, mask=d2_load_mask).to(tl.float32)
|
| 789 |
+
|
| 790 |
+
# -----------------------------------
|
| 791 |
+
# torch version sin/cos
|
| 792 |
+
# cos and sin values are interleaved in frequencies tensor.
|
| 793 |
+
f_offsets = seq_offsets[:, None] * D2 + d2_offsets[None, :]
|
| 794 |
+
cos_ref = tl.load(f_ptr + kv_position * D_HEAD + f_offsets * 2, mask=d2_load_mask).to(
|
| 795 |
+
dtype=tl.float32
|
| 796 |
+
)
|
| 797 |
+
sin_ref = tl.load(f_ptr + kv_position * D_HEAD + f_offsets * 2 + 1, mask=d2_load_mask).to(
|
| 798 |
+
dtype=tl.float32
|
| 799 |
+
)
|
| 800 |
+
|
| 801 |
+
qs1 = cos_ref[:, None, :] * q1 - sin_ref[:, None, :] * q2
|
| 802 |
+
qs2 = sin_ref[:, None, :] * q1 + cos_ref[:, None, :] * q2
|
| 803 |
+
|
| 804 |
+
tl.store(q_rope_ptr + q_offsets1, qs1, mask=q_mask)
|
| 805 |
+
tl.store(q_rope_ptr + q_offsets2, qs2, mask=q_mask)
|
| 806 |
+
|
| 807 |
+
ks1 = cos_ref * k1 - sin_ref * k2
|
| 808 |
+
ks2 = sin_ref * k1 + cos_ref * k2
|
| 809 |
+
|
| 810 |
+
# Write back to kv-caches
|
| 811 |
+
vs = tl.load(
|
| 812 |
+
v_ptr
|
| 813 |
+
+ kv_batch_offset
|
| 814 |
+
+ seq_offsets[:, None] * N_KV_HEADS * D_HEAD
|
| 815 |
+
+ kv_head_offset
|
| 816 |
+
+ dhead_offsets[None, :],
|
| 817 |
+
mask=load_mask,
|
| 818 |
+
)
|
| 819 |
+
|
| 820 |
+
kv_writeback_seq_offsets = seq_offsets + kv_position
|
| 821 |
+
|
| 822 |
+
cache_offset_base = (
|
| 823 |
+
cache_batch_offset
|
| 824 |
+
+ kv_writeback_seq_offsets[:, None] * D_HEAD * N_KV_HEADS
|
| 825 |
+
+ cache_head_offset
|
| 826 |
+
)
|
| 827 |
+
|
| 828 |
+
k_cache_offset1 = cache_offset_base + dhead_offsets1[None, :]
|
| 829 |
+
k_cache_offset2 = cache_offset_base + dhead_offsets2[None, :]
|
| 830 |
+
tl.store(k_cache_ptr + k_cache_offset1, ks1, mask=d2_load_mask)
|
| 831 |
+
tl.store(k_cache_ptr + k_cache_offset2, ks2, mask=d2_load_mask)
|
| 832 |
+
|
| 833 |
+
v_cache_offset = cache_offset_base + dhead_offsets[None, :]
|
| 834 |
+
tl.store(v_cache_ptr + v_cache_offset, vs, load_mask)
|
| 835 |
+
|
| 836 |
+
|
| 837 |
+
|
| 838 |
+
"""
|
| 839 |
+
Kernels based on paged KV Cache.
|
| 840 |
+
Parameter infos:
|
| 841 |
+
tensors:
|
| 842 |
+
- q: [b*s, n, d], flattened queries.
|
| 843 |
+
- k/v: [b*s, n, d], flattened key/value.
|
| 844 |
+
- seq_len: [b], length of each sequence in the batch.
|
| 845 |
+
`seq_len` can be 1 (generate) or larger (context).
|
| 846 |
+
- seq_start: [b], start index of each sequence in b*s dim of q/k/v.
|
| 847 |
+
- k_cache/v_cache: [num_pages, PAGE_SIZE, n, d], paged KV Cache.
|
| 848 |
+
New-coming k/v is split into small group of PAGE_SIZE, and then
|
| 849 |
+
mapped to incontinuous memory in KV Cache.
|
| 850 |
+
- page_table: [b, max_num_pages_per_seq], mapping logic of each sequence.
|
| 851 |
+
- cache_loc: [b], mapping logic of `batch_id` in q/k/v to index in `page_table`.
|
| 852 |
+
- cache_len: [b], existing cached k/v length of each sequence.
|
| 853 |
+
|
| 854 |
+
constexpr:
|
| 855 |
+
- N_HEADS/N_KV_HEADS: shape of dim [n] in q or k/v.
|
| 856 |
+
- D_HEAD: shape of dim [d] in q/k/v.
|
| 857 |
+
Assuming power of 2.
|
| 858 |
+
- SEQ_BLOCK: block size to split dim [s].
|
| 859 |
+
Assuming power of 2.
|
| 860 |
+
Split k/v in update kernel and split q in context/generate kernel.
|
| 861 |
+
- MAX_SEQ_LENGTH: seq_len <= MAX_SEQ_LENGTH.
|
| 862 |
+
- PAGE_SIZE: shape of each kv cache page,
|
| 863 |
+
Assuming power of 2 and SEQ_BLOCK % PAGE_SIZE = 0.
|
| 864 |
+
- PAGE_TABLE_STIDE: stride of dim [b] in `page_table`.
|
| 865 |
+
|
| 866 |
+
KV Cache access logic in update kernel:
|
| 867 |
+
1. batch_id i access k[seq_start[i] : seq_start[i] + seq_len[i]]
|
| 868 |
+
and can be split into pages [a:b] in the sequence.
|
| 869 |
+
2. Look up cache_len[i] to find if the sequence has cached k/v.
|
| 870 |
+
3. Look up page_table[cache_loc[i], cache_len[i] + a : cache_len[i] + b]
|
| 871 |
+
to get the corresponding pages in the k_cache, with result [c:d].
|
| 872 |
+
4. Then update k_cache[c:d] with the k value.
|
| 873 |
+
|
| 874 |
+
"""
|
| 875 |
+
|
| 876 |
+
|
| 877 |
+
@triton.jit
|
| 878 |
+
def update_paged_kv_cache(
|
| 879 |
+
k_ptr, # [B*S, N, D]
|
| 880 |
+
v_ptr, # [B*S, N, D]
|
| 881 |
+
seq_len_ptr, # [b] # length of each sequence in a batch
|
| 882 |
+
seq_start_indices_ptr, # [b] # start indices of a sequence in flattened q/k/v.
|
| 883 |
+
k_cache_ptr, # [num_pages, page_size, n, d]
|
| 884 |
+
v_cache_ptr, # [num_pages, page_size, n, d]
|
| 885 |
+
cache_loc_ptr, # [b] # index of the sequence in the page table.
|
| 886 |
+
cache_len_ptr, # [b] # length of the sequence already in kv cache.
|
| 887 |
+
page_table_ptr, # [b, max_num_pages_per_seq] # loc of the block page in the cache.
|
| 888 |
+
N_KV_HEADS: tl.constexpr, # Number of KV heads.
|
| 889 |
+
D_HEAD: tl.constexpr, # Dimension of each head.
|
| 890 |
+
SEQ_BLOCK: tl.constexpr,
|
| 891 |
+
MAX_SEQ_LENGTH: tl.constexpr,
|
| 892 |
+
PAGE_SIZE: tl.constexpr,
|
| 893 |
+
PAGE_TABLE_STRIDE: tl.constexpr,
|
| 894 |
+
GENERATE_ONLY: tl.constexpr,
|
| 895 |
+
):
|
| 896 |
+
batch_id = tl.program_id(axis=0)
|
| 897 |
+
head_id = tl.program_id(axis=1)
|
| 898 |
+
seq_block_id = tl.program_id(axis=2)
|
| 899 |
+
|
| 900 |
+
# Each program is responsible for a block of tokens in a single batch.
|
| 901 |
+
if GENERATE_ONLY:
|
| 902 |
+
seq_start_index = batch_id
|
| 903 |
+
seq_len: tl.constexpr = 1
|
| 904 |
+
else:
|
| 905 |
+
seq_start_index = tl.load(seq_start_indices_ptr + batch_id)
|
| 906 |
+
seq_len = tl.load(seq_len_ptr + batch_id)
|
| 907 |
+
|
| 908 |
+
cache_len = tl.load(cache_len_ptr + batch_id)
|
| 909 |
+
|
| 910 |
+
# cache is [num_pages, page_size, n, d]
|
| 911 |
+
# cache_loc_ptr stores the batch index for the sequences provided to the kernel.
|
| 912 |
+
cache_loc = tl.load(cache_loc_ptr + batch_id)
|
| 913 |
+
cache_head_offset = head_id * D_HEAD
|
| 914 |
+
|
| 915 |
+
# Assuming D_HEAD is a power of 2
|
| 916 |
+
dhead_offsets = tl.arange(0, D_HEAD)
|
| 917 |
+
dhead_mask = dhead_offsets < D_HEAD
|
| 918 |
+
|
| 919 |
+
seq_offsets = seq_block_id * SEQ_BLOCK + tl.arange(0, SEQ_BLOCK)
|
| 920 |
+
seq_mask = seq_offsets < seq_len
|
| 921 |
+
|
| 922 |
+
load_mask = seq_mask[:, None] * dhead_mask[None, :]
|
| 923 |
+
|
| 924 |
+
kv_batch_offset = seq_start_index * N_KV_HEADS * D_HEAD
|
| 925 |
+
kv_head_offset = cache_head_offset
|
| 926 |
+
|
| 927 |
+
# Write back to kv-caches
|
| 928 |
+
ks = tl.load(
|
| 929 |
+
k_ptr
|
| 930 |
+
+ kv_batch_offset
|
| 931 |
+
+ seq_offsets[:, None] * N_KV_HEADS * D_HEAD
|
| 932 |
+
+ kv_head_offset
|
| 933 |
+
+ dhead_offsets[None, :],
|
| 934 |
+
mask=load_mask,
|
| 935 |
+
)
|
| 936 |
+
vs = tl.load(
|
| 937 |
+
v_ptr
|
| 938 |
+
+ kv_batch_offset
|
| 939 |
+
+ seq_offsets[:, None] * N_KV_HEADS * D_HEAD
|
| 940 |
+
+ kv_head_offset
|
| 941 |
+
+ dhead_offsets[None, :],
|
| 942 |
+
mask=load_mask,
|
| 943 |
+
)
|
| 944 |
+
|
| 945 |
+
# assuming SEQ_BLOCK can be divided by PAGE_SIZE and PAGE_SIZE is a power of 2.
|
| 946 |
+
SEQ_BLOCK_PAGE: tl.constexpr = SEQ_BLOCK // PAGE_SIZE
|
| 947 |
+
MAX_NUM_PAGES: tl.constexpr = (MAX_SEQ_LENGTH + PAGE_SIZE - 1) // PAGE_SIZE
|
| 948 |
+
# cache_len // PAGE_SIZE means history pages
|
| 949 |
+
# if decode sequence, then seq_len = 1 and only seq_block_id = 0 works,
|
| 950 |
+
kv_pages = seq_block_id * SEQ_BLOCK_PAGE + tl.arange(0, SEQ_BLOCK_PAGE) + cache_len // PAGE_SIZE
|
| 951 |
+
cache_pages = tl.load(
|
| 952 |
+
page_table_ptr + cache_loc * PAGE_TABLE_STRIDE + kv_pages, mask=kv_pages < MAX_NUM_PAGES
|
| 953 |
+
)
|
| 954 |
+
|
| 955 |
+
page_offsets = tl.arange(0, PAGE_SIZE)
|
| 956 |
+
# shape [SEQ_BLOCK], means [cache_pages, page_offsets]
|
| 957 |
+
cache_seq_offset = tl.reshape(
|
| 958 |
+
cache_pages[:, None] * PAGE_SIZE + page_offsets[None, :], [SEQ_BLOCK]
|
| 959 |
+
)
|
| 960 |
+
# write offset inside the page
|
| 961 |
+
cache_seq_offset += cache_len % PAGE_SIZE
|
| 962 |
+
|
| 963 |
+
cache_offsets = (
|
| 964 |
+
cache_seq_offset[:, None] * N_KV_HEADS * D_HEAD + kv_head_offset + dhead_offsets[None, :]
|
| 965 |
+
)
|
| 966 |
+
tl.store(k_cache_ptr + cache_offsets, ks, load_mask)
|
| 967 |
+
tl.store(v_cache_ptr + cache_offsets, vs, load_mask)
|
| 968 |
+
|
| 969 |
+
|
| 970 |
+
# TODO: Write a doc describing the 2 stage algorithm
|
| 971 |
+
@triton.jit
|
| 972 |
+
def attention_kv_paged_stage1(
|
| 973 |
+
q_ptr, # [Batch, 1, N_HEADS, D_HEAD]
|
| 974 |
+
k_cache_ptr, # [NUM_PAGES, PAGE_SIZE, N_HEADS, D_HEAD]
|
| 975 |
+
v_cache_ptr, # [NUM_PAGES, PAGE_SIZE, N_HEADS, D_HEAD]
|
| 976 |
+
cache_loc_ptr, # [Batch] # Specifies the batch index for each of the generate tokens.
|
| 977 |
+
page_table_ptr, # [Batch, num_pages_per_seq]
|
| 978 |
+
cache_len_ptr, # [Batch] # Number of tokens in kv cache.
|
| 979 |
+
output_values_ptr, # [Batch, N_HEADS, num_blocks, D_HEAD]
|
| 980 |
+
output_logsumexp_ptr, # [Batch, N_HEADS, num_blocks]
|
| 981 |
+
num_blocks,
|
| 982 |
+
MAX_SEQ_LEN: tl.constexpr, # Maximum supported sequence length
|
| 983 |
+
N_HEADS: tl.constexpr, # Number of heads
|
| 984 |
+
N_KV_HEADS: tl.constexpr, # Number of KV heads.
|
| 985 |
+
D_HEAD: tl.constexpr, # Dimension of each head.
|
| 986 |
+
# Block size used for tiling the sequence dim.
|
| 987 |
+
SEQ_BLOCK_SIZE: tl.constexpr,
|
| 988 |
+
PAGE_SIZE: tl.constexpr,
|
| 989 |
+
PAGE_TABLE_STRIDE: tl.constexpr,
|
| 990 |
+
):
|
| 991 |
+
"""Attention kernel to be used during the generate phase.
|
| 992 |
+
|
| 993 |
+
Uses flash decoding.
|
| 994 |
+
KV-cache layout is assumed to be [Batch, Head, Seq, Dim]
|
| 995 |
+
1. Fetch the K-cache from 0 to input_pos
|
| 996 |
+
2. Fetch the V-cache from 0 to input_pos
|
| 997 |
+
3. A = Q*K^T [1,D_HEAD] * [1,seq_len,D_HEAD] -> [1, seq_len]
|
| 998 |
+
4. S = softmax(A)
|
| 999 |
+
5. O = S*V [1, seq_len] * [1, seq_len, D_HEAD] -> [1, D_HEAD]
|
| 1000 |
+
"""
|
| 1001 |
+
# Assume KV-cache layout: [Batch, Head, Seq, Dim]
|
| 1002 |
+
# A program is responsible for 1 batch, 1 head and a block of sequences.
|
| 1003 |
+
batch_id = tl.program_id(axis=0)
|
| 1004 |
+
head_id = tl.program_id(axis=1)
|
| 1005 |
+
seq_block_id = tl.program_id(axis=2)
|
| 1006 |
+
|
| 1007 |
+
SEQ_BLOCK_PAGE: tl.constexpr = SEQ_BLOCK_SIZE // PAGE_SIZE
|
| 1008 |
+
MAX_NUM_PAGES: tl.constexpr = MAX_SEQ_LEN // PAGE_SIZE
|
| 1009 |
+
|
| 1010 |
+
cache_loc = tl.load(cache_loc_ptr + batch_id)
|
| 1011 |
+
seq_len = tl.load(cache_len_ptr + batch_id)
|
| 1012 |
+
# Offsets for the block of sequences this program processes.
|
| 1013 |
+
seq_start_pos = seq_block_id * SEQ_BLOCK_SIZE
|
| 1014 |
+
|
| 1015 |
+
if seq_start_pos > seq_len:
|
| 1016 |
+
return
|
| 1017 |
+
seq_offsets = seq_start_pos + tl.arange(0, SEQ_BLOCK_SIZE)
|
| 1018 |
+
seq_mask = seq_offsets <= seq_len
|
| 1019 |
+
# Assuming D_HEAD is a power of 2
|
| 1020 |
+
dhead_offsets = tl.arange(0, D_HEAD)
|
| 1021 |
+
dhead_mask = dhead_offsets < D_HEAD
|
| 1022 |
+
|
| 1023 |
+
HEAD_RATIO: tl.constexpr = N_HEADS // N_KV_HEADS
|
| 1024 |
+
cache_head_offset = (head_id // HEAD_RATIO) * D_HEAD
|
| 1025 |
+
|
| 1026 |
+
sm_scale: tl.constexpr = 1 / (D_HEAD**0.5)
|
| 1027 |
+
|
| 1028 |
+
# Program loads the entire Q for the head assigned to it.
|
| 1029 |
+
# [D_HEAD]
|
| 1030 |
+
q_batch_offset = batch_id * N_HEADS * D_HEAD
|
| 1031 |
+
q_head_offset = head_id * D_HEAD
|
| 1032 |
+
q = tl.load(q_ptr + q_batch_offset + q_head_offset + dhead_offsets)
|
| 1033 |
+
|
| 1034 |
+
kv_mask = seq_mask[:, None] * dhead_mask[None, :]
|
| 1035 |
+
|
| 1036 |
+
kv_pages = seq_block_id * SEQ_BLOCK_PAGE + tl.arange(0, SEQ_BLOCK_PAGE)
|
| 1037 |
+
cache_pages = tl.load(
|
| 1038 |
+
page_table_ptr + cache_loc * PAGE_TABLE_STRIDE + kv_pages, mask=kv_pages < MAX_NUM_PAGES
|
| 1039 |
+
)
|
| 1040 |
+
|
| 1041 |
+
page_offsets = tl.arange(0, PAGE_SIZE)
|
| 1042 |
+
# shape [SEQ_BLOCK], means [cache_pages, page_offsets]
|
| 1043 |
+
# token offsets in the paged kv cache
|
| 1044 |
+
cache_seq_offset = tl.reshape(
|
| 1045 |
+
cache_pages[:, None] * PAGE_SIZE + page_offsets[None, :], [SEQ_BLOCK_SIZE]
|
| 1046 |
+
)
|
| 1047 |
+
|
| 1048 |
+
cache_offsets = (
|
| 1049 |
+
cache_seq_offset[:, None] * N_KV_HEADS * D_HEAD + cache_head_offset + dhead_offsets[None, :]
|
| 1050 |
+
)
|
| 1051 |
+
|
| 1052 |
+
k = tl.load(k_cache_ptr + cache_offsets, mask=kv_mask)
|
| 1053 |
+
v = tl.load(v_cache_ptr + cache_offsets, mask=kv_mask)
|
| 1054 |
+
|
| 1055 |
+
# Note: check the output precision of the sum.
|
| 1056 |
+
# compute q*K^T
|
| 1057 |
+
# [D_HEAD] * [seq_block, D_HEAD], sum along axis 1
|
| 1058 |
+
attn = tl.sum(q[None, :] * k, axis=1) # [seq_block]
|
| 1059 |
+
attn = attn.to(tl.float32)
|
| 1060 |
+
attn *= sm_scale
|
| 1061 |
+
max_attn = tl.max(attn)
|
| 1062 |
+
# Set to -inf attn values where mask is not set. This forces exp(attn) to 0.
|
| 1063 |
+
attn = tl.where(seq_mask, attn, float("-inf"))
|
| 1064 |
+
exp_attn = tl.exp(attn - max_attn)
|
| 1065 |
+
|
| 1066 |
+
sumexp = tl.sum(exp_attn, axis=0) # scalar.
|
| 1067 |
+
|
| 1068 |
+
# [seq_len] * [seq_len, D_HEAD], sum along axis 0
|
| 1069 |
+
output = tl.sum(exp_attn[:, None] * v, axis=0) # [D_HEAD]
|
| 1070 |
+
|
| 1071 |
+
output = output / sumexp
|
| 1072 |
+
|
| 1073 |
+
# We store the log-sum-exp after removing the max.
|
| 1074 |
+
logsumexp = tl.log(sumexp) + max_attn
|
| 1075 |
+
# when seq_mask is all false, max_attn will be -inf and sumexp is zero
|
| 1076 |
+
|
| 1077 |
+
tl.store(
|
| 1078 |
+
output_values_ptr
|
| 1079 |
+
+ batch_id * N_HEADS * D_HEAD * num_blocks
|
| 1080 |
+
+ head_id * D_HEAD * num_blocks
|
| 1081 |
+
+ seq_block_id * D_HEAD
|
| 1082 |
+
+ dhead_offsets,
|
| 1083 |
+
output,
|
| 1084 |
+
)
|
| 1085 |
+
tl.store(
|
| 1086 |
+
output_logsumexp_ptr
|
| 1087 |
+
+ batch_id * N_HEADS * num_blocks
|
| 1088 |
+
+ head_id * num_blocks
|
| 1089 |
+
+ seq_block_id,
|
| 1090 |
+
logsumexp,
|
| 1091 |
+
)
|
| 1092 |
+
|
| 1093 |
+
|
| 1094 |
+
@triton.jit
|
| 1095 |
+
def context_attention_kv_paged(
|
| 1096 |
+
q_ptr, # [b*s,nd]
|
| 1097 |
+
seq_len_ptr, # [b] # length of each sequence in a batch
|
| 1098 |
+
seq_start_ptr, # [b] # start indices of a sequence in flattened q/k/v.
|
| 1099 |
+
k_cache_ptr, # [num_pages, page_size, n, d]
|
| 1100 |
+
v_cache_ptr, # [num_pages, page_size, n, d]
|
| 1101 |
+
cache_loc_ptr, # [b] # index of the sequence in the page table.
|
| 1102 |
+
cache_len_ptr, # [Batch] # Number of tokens in kv cache.
|
| 1103 |
+
page_table_ptr, # [b, max_num_pages_per_seq] # loc of the block page in the cache.
|
| 1104 |
+
softmax_scale,
|
| 1105 |
+
o_ptr,
|
| 1106 |
+
N_HEADS: tl.constexpr, # Number of heads
|
| 1107 |
+
N_KV_HEADS: tl.constexpr, # Number of KV heads.
|
| 1108 |
+
D_HEAD: tl.constexpr, # Dimension of each head.
|
| 1109 |
+
SEQ_BLOCK: tl.constexpr,
|
| 1110 |
+
MAX_SEQ_LENGTH: tl.constexpr,
|
| 1111 |
+
PAGE_SIZE: tl.constexpr,
|
| 1112 |
+
PAGE_TABLE_STRIDE: tl.constexpr,
|
| 1113 |
+
):
|
| 1114 |
+
"""Kernel for context phase.
|
| 1115 |
+
|
| 1116 |
+
Fuses rope
|
| 1117 |
+
Assuming:
|
| 1118 |
+
1. Self-attention [seqlen(Q) == seqlen(K)]
|
| 1119 |
+
2. Causal attention
|
| 1120 |
+
3. QKV layout: [b*s,n,d]
|
| 1121 |
+
"""
|
| 1122 |
+
batch_id = tl.program_id(axis=0)
|
| 1123 |
+
head_id = tl.program_id(axis=1)
|
| 1124 |
+
seq_block_id = tl.program_id(axis=2)
|
| 1125 |
+
|
| 1126 |
+
# Each program is responsible for a block of tokens in a single batch.
|
| 1127 |
+
seq_start_index = tl.load(seq_start_ptr + batch_id)
|
| 1128 |
+
seq_len = tl.load(seq_len_ptr + batch_id)
|
| 1129 |
+
|
| 1130 |
+
HEAD_RATIO: tl.constexpr = N_HEADS // N_KV_HEADS
|
| 1131 |
+
|
| 1132 |
+
# assuming SEQ_BLOCK can be divided by PAGE_SIZE and PAGE_SIZE is a power of 2.
|
| 1133 |
+
SEQ_BLOCK_PAGE: tl.constexpr = SEQ_BLOCK // PAGE_SIZE
|
| 1134 |
+
MAX_NUM_PAGES: tl.constexpr = (MAX_SEQ_LENGTH + PAGE_SIZE - 1) // PAGE_SIZE
|
| 1135 |
+
|
| 1136 |
+
# cache is [num_pages, page_size, n, d]
|
| 1137 |
+
# cache_loc_ptr stores the batch index for the sequences provided to the kernel.
|
| 1138 |
+
cache_loc = tl.load(cache_loc_ptr + batch_id)
|
| 1139 |
+
table_batch_offset = cache_loc * PAGE_TABLE_STRIDE
|
| 1140 |
+
|
| 1141 |
+
# Assuming D_HEAD is a power of 2
|
| 1142 |
+
dhead_offsets = tl.arange(0, D_HEAD)
|
| 1143 |
+
dhead_mask = dhead_offsets < D_HEAD
|
| 1144 |
+
|
| 1145 |
+
seq_offsets = tl.arange(0, SEQ_BLOCK)
|
| 1146 |
+
q_seq_offsets = seq_block_id * SEQ_BLOCK + seq_offsets
|
| 1147 |
+
seq_mask = q_seq_offsets < seq_len
|
| 1148 |
+
|
| 1149 |
+
load_mask = seq_mask[:, None] * dhead_mask[None, :]
|
| 1150 |
+
|
| 1151 |
+
q_batch_offset = seq_start_index * N_HEADS * D_HEAD
|
| 1152 |
+
q_head_offset = head_id * D_HEAD
|
| 1153 |
+
cache_head_offset = (head_id // HEAD_RATIO) * D_HEAD
|
| 1154 |
+
|
| 1155 |
+
# Q will stay in SRAM
|
| 1156 |
+
q = tl.load(
|
| 1157 |
+
q_ptr
|
| 1158 |
+
+ q_batch_offset
|
| 1159 |
+
+ q_seq_offsets[:, None] * N_HEADS * D_HEAD
|
| 1160 |
+
+ q_head_offset
|
| 1161 |
+
+ dhead_offsets[None, :],
|
| 1162 |
+
mask=load_mask,
|
| 1163 |
+
)
|
| 1164 |
+
acc = tl.zeros([SEQ_BLOCK, D_HEAD], dtype=tl.float32)
|
| 1165 |
+
lse_i = tl.zeros([SEQ_BLOCK], dtype=tl.float32) - float("inf")
|
| 1166 |
+
m_i = tl.zeros([SEQ_BLOCK], dtype=tl.float32) - float("inf")
|
| 1167 |
+
|
| 1168 |
+
cache_len = tl.load(cache_len_ptr + batch_id)
|
| 1169 |
+
total_len = cache_len + seq_len
|
| 1170 |
+
num_blocks = (total_len + SEQ_BLOCK - 1) // SEQ_BLOCK
|
| 1171 |
+
for s in range(0, num_blocks + 1, 1):
|
| 1172 |
+
kv_pages = s * SEQ_BLOCK_PAGE + tl.arange(0, SEQ_BLOCK_PAGE)
|
| 1173 |
+
cache_pages = tl.load(
|
| 1174 |
+
page_table_ptr + table_batch_offset + kv_pages, mask=kv_pages < MAX_NUM_PAGES
|
| 1175 |
+
)
|
| 1176 |
+
|
| 1177 |
+
page_offsets = tl.arange(0, PAGE_SIZE)
|
| 1178 |
+
# shape [SEQ_BLOCK], means [cache_pages, page_offsets]
|
| 1179 |
+
# physical token offsets in the paged kv cache
|
| 1180 |
+
cache_seq_offset = tl.reshape(
|
| 1181 |
+
cache_pages[:, None] * PAGE_SIZE + page_offsets[None, :], [SEQ_BLOCK]
|
| 1182 |
+
)
|
| 1183 |
+
cache_offsets = (
|
| 1184 |
+
cache_seq_offset[:, None] * N_KV_HEADS * D_HEAD
|
| 1185 |
+
+ cache_head_offset
|
| 1186 |
+
+ dhead_offsets[None, :]
|
| 1187 |
+
)
|
| 1188 |
+
|
| 1189 |
+
# logical kv tokens offsets
|
| 1190 |
+
kv_seq_offsets = s * SEQ_BLOCK + seq_offsets
|
| 1191 |
+
kv_seq_mask = kv_seq_offsets < total_len
|
| 1192 |
+
kv_load_mask = kv_seq_mask[:, None] * dhead_mask[None, :]
|
| 1193 |
+
|
| 1194 |
+
k = tl.load(k_cache_ptr + cache_offsets, mask=kv_load_mask)
|
| 1195 |
+
qk = tl.zeros([SEQ_BLOCK, SEQ_BLOCK], dtype=tl.float32)
|
| 1196 |
+
qk += tl.dot(q, k.trans())
|
| 1197 |
+
# causal mask, need to use kv_seq_offsets
|
| 1198 |
+
qk = tl.where(
|
| 1199 |
+
(q_seq_offsets[:, None] + cache_len) >= kv_seq_offsets[None, :], qk, float("-inf")
|
| 1200 |
+
)
|
| 1201 |
+
|
| 1202 |
+
qk *= softmax_scale
|
| 1203 |
+
# rowmax
|
| 1204 |
+
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
| 1205 |
+
p = tl.exp(qk - m_ij[:, None])
|
| 1206 |
+
v = tl.load(v_cache_ptr + cache_offsets, mask=kv_load_mask)
|
| 1207 |
+
|
| 1208 |
+
l_ij = tl.sum(p, 1)
|
| 1209 |
+
acc_scale = tl.exp(m_i - m_ij)
|
| 1210 |
+
acc = acc * acc_scale[:, None]
|
| 1211 |
+
p = p.to(v.dtype)
|
| 1212 |
+
acc += tl.dot(p, v)
|
| 1213 |
+
m_i = m_ij
|
| 1214 |
+
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
| 1215 |
+
lse_i = m_ij + tl.log(l_i_new)
|
| 1216 |
+
|
| 1217 |
+
o_scale = tl.exp(m_i - lse_i)
|
| 1218 |
+
|
| 1219 |
+
acc = acc * o_scale[:, None]
|
| 1220 |
+
|
| 1221 |
+
tl.store(
|
| 1222 |
+
o_ptr
|
| 1223 |
+
+ q_batch_offset
|
| 1224 |
+
+ q_seq_offsets[:, None] * N_HEADS * D_HEAD
|
| 1225 |
+
+ q_head_offset
|
| 1226 |
+
+ dhead_offsets[None, :],
|
| 1227 |
+
acc,
|
| 1228 |
+
mask=load_mask,
|
| 1229 |
+
)
|
| 1230 |
+
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
@dataclass
|
| 1234 |
+
class PositionalEmbeddingConfig:
|
| 1235 |
+
"""A dataclass to hold positional embedding information."""
|
| 1236 |
+
|
| 1237 |
+
mode: Optional[Literal["rope"]] = None
|
| 1238 |
+
rope_theta: float = 10000.0
|
| 1239 |
+
rope_scale: float = 1.0
|
| 1240 |
+
|
| 1241 |
+
def __post_init__(self):
|
| 1242 |
+
assert self.mode in [None, "rope"], f"Invalid mode: {self.mode}."
|
| 1243 |
+
if self.mode == "rope":
|
| 1244 |
+
assert self.rope_theta > 0, f"Invalid rope theta: {self.rope_theta}."
|
| 1245 |
+
|
| 1246 |
+
|
| 1247 |
+
@dataclass
|
| 1248 |
+
class CacheConfig:
|
| 1249 |
+
"""A dataclass to hold information how to configure the cache."""
|
| 1250 |
+
|
| 1251 |
+
dtype: Optional[torch.dtype] = None
|
| 1252 |
+
|
| 1253 |
+
|
| 1254 |
+
@dataclass
|
| 1255 |
+
class AttentionInfo:
|
| 1256 |
+
"""Information about the attention op.
|
| 1257 |
+
|
| 1258 |
+
This is the dataclass collected by the kvcache transformation and passed in to the
|
| 1259 |
+
AttentionDescriptor methods to inform the attention op about the attention configuration.
|
| 1260 |
+
"""
|
| 1261 |
+
|
| 1262 |
+
num_heads: int
|
| 1263 |
+
num_kv_heads: int
|
| 1264 |
+
head_dim: int # embedding size of each head
|
| 1265 |
+
dtype: torch.dtype
|
| 1266 |
+
|
| 1267 |
+
cache_config: CacheConfig
|
| 1268 |
+
pos_embd_config: PositionalEmbeddingConfig
|
| 1269 |
+
# rope_dim represents embedding size of decoupled q/k that carry rope information
|
| 1270 |
+
# when rope_dim != 0 the decoupled q/k tensor carrying rope information is the last part of the tensor [-rope_dim: ]
|
| 1271 |
+
rope_dim: Optional[int] = 0
|
| 1272 |
+
|
| 1273 |
+
|
| 1274 |
+
@dataclass
|
| 1275 |
+
class SequenceInfo:
|
| 1276 |
+
"""A dataclass to hold information about how the sequence is laid out and stored in cache.
|
| 1277 |
+
|
| 1278 |
+
We assume the sequence + cache is laid out in the following way:
|
| 1279 |
+
|
| 1280 |
+
- input_ids: [id_0, ..., id_{s_total-1}]
|
| 1281 |
+
flattened sequence of [b, 1] or [1, s_total]. We use [b, 1] to denote generate-only batches.
|
| 1282 |
+
- seq_len: [s_0, s_1, ..., s_{b-1}] such that s_total = sum(s_i)
|
| 1283 |
+
Describes how long each sequence is. For example,
|
| 1284 |
+
input_ids[:s_0] will correspond to sequence 0 in the batch and input_ids[s_0:s_1] will
|
| 1285 |
+
correspond to sequence 1 in the batch.
|
| 1286 |
+
- input_pos: [pos_0, ..., pos_{b-1}]
|
| 1287 |
+
Corresponds to the total number of tokens that has been already been cached for each sequence
|
| 1288 |
+
in the batch.
|
| 1289 |
+
- cache_loc: [c0, ...., c_{np-1}] where np is total number of pages allocated to describe all
|
| 1290 |
+
sequences in the batch.
|
| 1291 |
+
- pages_per_seq: [ps_0, ps_1, ..., ps_{b-1}] where ps_i is the number of pages allocated for
|
| 1292 |
+
sequence i. Note that, for example, cache_loc[p_0:p_1] will correspond to the pages associated
|
| 1293 |
+
with sequence 1 in the batch.
|
| 1294 |
+
|
| 1295 |
+
Here are a couple of notes to emphasize this notation:
|
| 1296 |
+
|
| 1297 |
+
- The total number of allocated token space for sequence i is given by ps_i * page_size. This is
|
| 1298 |
+
the total number of tokens that can be cached for each sequence.
|
| 1299 |
+
|
| 1300 |
+
- NOTE: It must hold that pos_i + s_i <= ps_i * page_size for all i in [0, b-1]. Moreover, it is
|
| 1301 |
+
the responsibility of the cache manager and/or runtime to ensure sufficient page allocation
|
| 1302 |
+
for each sequence.
|
| 1303 |
+
|
| 1304 |
+
"""
|
| 1305 |
+
|
| 1306 |
+
## USE TO INITIALIZE DATA CLASS ###############################################################
|
| 1307 |
+
# max_seq_len corresponds the maximum number of tokens in any sequence. It includes the tokens in the
|
| 1308 |
+
# input sequence and the tokens generated by the model.
|
| 1309 |
+
max_seq_len: int = 1
|
| 1310 |
+
# max_batch_size corresponds to the maximum number of sequences (or requests) that the model can process.
|
| 1311 |
+
max_batch_size: int = 1
|
| 1312 |
+
# page_size is the granularity with which the cache pages are allocated for a paged kv cache.
|
| 1313 |
+
# For an unpaged cache, the page size should be set to max_seq_len.
|
| 1314 |
+
# Also note that two sequences in a batch can not share a page.
|
| 1315 |
+
page_size: int = 0
|
| 1316 |
+
# max_num_tokens is the maximum number of tokens that the model can process across all sequences in the batch.
|
| 1317 |
+
# If a batch is composed of context-only requests of input sequence length ISL,
|
| 1318 |
+
# then the maximum number of sequences possible in the batch is min (max_batch_size, max_num_tokens // ISL).
|
| 1319 |
+
# Similarly, if a batch is composed of generate-only requests,
|
| 1320 |
+
# then the maximum number of sequences possible in the batch is min (max_batch_size, max_num_tokens).
|
| 1321 |
+
max_num_tokens: int = 0
|
| 1322 |
+
|
| 1323 |
+
## [UPDATE WITH CARE] TENSOR FIELDS THAT WILL BE PASSED TO PREPARE_METADATA OP #################
|
| 1324 |
+
# input_ids MUST ALWAYS BE THE FIRST FIELD
|
| 1325 |
+
input_ids: torch.Tensor = field(default_factory=lambda: torch.zeros(1, 1, dtype=torch.int))
|
| 1326 |
+
seq_len: torch.Tensor = field(default_factory=lambda: torch.ones(1, dtype=torch.int))
|
| 1327 |
+
input_pos: torch.Tensor = field(default_factory=lambda: torch.zeros(1, dtype=torch.int))
|
| 1328 |
+
cache_loc: torch.Tensor = field(default_factory=lambda: torch.arange(1, dtype=torch.int))
|
| 1329 |
+
pages_per_seq: torch.Tensor = field(default_factory=lambda: torch.ones(1, dtype=torch.int))
|
| 1330 |
+
################################################################################################
|
| 1331 |
+
|
| 1332 |
+
## PRIVATE FIELDS ##############################################################################
|
| 1333 |
+
_sequence_lengths: List[int] = field(default_factory=list)
|
| 1334 |
+
_num_pages: int = 1
|
| 1335 |
+
|
| 1336 |
+
def __post_init__(self):
|
| 1337 |
+
if self.page_size < 1:
|
| 1338 |
+
self.page_size = self.max_seq_len
|
| 1339 |
+
if self.max_num_tokens < 1:
|
| 1340 |
+
self.max_num_tokens = self.max_batch_size * self.max_seq_len
|
| 1341 |
+
# if the provided max_num_tokens is less than the max_batch_size * max_seq_len,
|
| 1342 |
+
# we use the provided max_num_tokens to calculate the number of pages
|
| 1343 |
+
total_tokens = min(self.max_num_tokens, self.max_batch_size * self.max_seq_len)
|
| 1344 |
+
self._num_pages = (total_tokens) // self.page_size + (total_tokens % self.page_size > 0)
|
| 1345 |
+
self.input_ids = torch.ones(self.max_batch_size, 1, dtype=torch.int)
|
| 1346 |
+
self.seq_len = torch.empty(self.max_batch_size, dtype=torch.int)
|
| 1347 |
+
self.input_pos = torch.empty_like(self.seq_len)
|
| 1348 |
+
self.cache_loc = torch.empty(self.num_pages, dtype=torch.int)
|
| 1349 |
+
self.pages_per_seq = torch.empty_like(self.seq_len)
|
| 1350 |
+
|
| 1351 |
+
# dynamic shape descriptors for tensor args
|
| 1352 |
+
self._dynamic_shapes: Optional[Tuple[Dict[str, Dim]]] = None
|
| 1353 |
+
|
| 1354 |
+
# keep a list-like object of sequence lengths for simplicity as well
|
| 1355 |
+
self._sequence_lengths = [0] * self.max_batch_size
|
| 1356 |
+
|
| 1357 |
+
# call reset once to initialize the tensors
|
| 1358 |
+
self.reset()
|
| 1359 |
+
|
| 1360 |
+
@property
|
| 1361 |
+
def device(self) -> torch.device:
|
| 1362 |
+
return self.input_pos.device
|
| 1363 |
+
|
| 1364 |
+
@property
|
| 1365 |
+
def args(self) -> List[torch.Tensor]:
|
| 1366 |
+
args = []
|
| 1367 |
+
for f in fields(self):
|
| 1368 |
+
val = getattr(self, f.name)
|
| 1369 |
+
if isinstance(val, torch.Tensor):
|
| 1370 |
+
args.append(val)
|
| 1371 |
+
return args
|
| 1372 |
+
|
| 1373 |
+
@property
|
| 1374 |
+
def extra_arg_names(self) -> List[str]:
|
| 1375 |
+
"""Return extra arg names for the prepare_metadata op beyond input_ids."""
|
| 1376 |
+
return [f.name for f in fields(self) if isinstance(getattr(self, f.name), torch.Tensor)][1:]
|
| 1377 |
+
|
| 1378 |
+
@property
|
| 1379 |
+
def dynamic_shapes(self) -> Tuple[Dict[str, Dim]]:
|
| 1380 |
+
"""Return dynamic shapes of sequence info tensors.
|
| 1381 |
+
|
| 1382 |
+
NOTE: will be lazily initialized since the Dim object is not picklable for multi-processing.
|
| 1383 |
+
"""
|
| 1384 |
+
if self._dynamic_shapes is None:
|
| 1385 |
+
dynamic_shapes = ({},)
|
| 1386 |
+
if self.max_batch_size > 1:
|
| 1387 |
+
dynamic_shapes[0][0] = Dim("batch_size", max=self.max_batch_size)
|
| 1388 |
+
dynamic_shapes[0][1] = Dim("seq_len", max=self.max_seq_len)
|
| 1389 |
+
dynamic_shapes += ({},) * len(self.extra_arg_names)
|
| 1390 |
+
self._dynamic_shapes = dynamic_shapes
|
| 1391 |
+
return self._dynamic_shapes
|
| 1392 |
+
|
| 1393 |
+
@property
|
| 1394 |
+
def num_sequences(self) -> int:
|
| 1395 |
+
return len(self._sequence_lengths)
|
| 1396 |
+
|
| 1397 |
+
@property
|
| 1398 |
+
def sequence_lengths(self) -> List[int]:
|
| 1399 |
+
return self._sequence_lengths
|
| 1400 |
+
|
| 1401 |
+
@property
|
| 1402 |
+
def input_positions(self) -> List[int]:
|
| 1403 |
+
return self.input_pos[: self.num_sequences].tolist()
|
| 1404 |
+
|
| 1405 |
+
@property
|
| 1406 |
+
def is_generate(self) -> bool:
|
| 1407 |
+
return all(sl == 1 for sl in self.sequence_lengths)
|
| 1408 |
+
|
| 1409 |
+
@property
|
| 1410 |
+
def num_pages(self) -> int:
|
| 1411 |
+
return self._num_pages
|
| 1412 |
+
|
| 1413 |
+
@num_pages.setter
|
| 1414 |
+
def num_pages(self, value):
|
| 1415 |
+
self._num_pages = value
|
| 1416 |
+
# update the cache_loc tensor
|
| 1417 |
+
self.cache_loc.resize_(value)
|
| 1418 |
+
|
| 1419 |
+
@property
|
| 1420 |
+
def is_paged(self) -> bool:
|
| 1421 |
+
return self.page_size < self.max_seq_len
|
| 1422 |
+
|
| 1423 |
+
@property
|
| 1424 |
+
def page_assignments(self) -> List[List[int]]:
|
| 1425 |
+
"""Return the page assignments for each sequence."""
|
| 1426 |
+
pages_per_seq = self.pages_per_seq[: self.num_sequences].tolist()
|
| 1427 |
+
return [
|
| 1428 |
+
c_loc_one_seq.tolist()
|
| 1429 |
+
for c_loc_one_seq in torch.split(self.cache_loc[: sum(pages_per_seq)], pages_per_seq)
|
| 1430 |
+
]
|
| 1431 |
+
|
| 1432 |
+
@classmethod
|
| 1433 |
+
def _get_sanitized_seq_len(cls, input_ids: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
|
| 1434 |
+
"""Sanitize sequence lengths.
|
| 1435 |
+
|
| 1436 |
+
We want to cover the following scenarios with this function:
|
| 1437 |
+
|
| 1438 |
+
1. Pre-fill:
|
| 1439 |
+
input_ids: [1, s_total, ...]
|
| 1440 |
+
seq_len: [s_0, s_1, ..., s_{b-1}, 0, 0, ..., 0]
|
| 1441 |
+
---> returns [s_0, s_1, ..., s_{b-1}]
|
| 1442 |
+
2. Decode:
|
| 1443 |
+
input_ids: [b, 1, ...]
|
| 1444 |
+
seq_len: [1, 1, ..., 1, 0, 0, ..., ..., ..., ..., 0]
|
| 1445 |
+
|---- b ----|--- (max_batch_size - b) ---|
|
| 1446 |
+
--> returns [1,] * b
|
| 1447 |
+
3. Decode in Cudagraph:
|
| 1448 |
+
input_ids: [b_cudagraph, 1, ...]
|
| 1449 |
+
seq_len: [1, 1, ..., 1, 0, 0, ..., ..., ..., ..., 0]
|
| 1450 |
+
|---- b ----|--- (max_batch_size - b) ---|
|
| 1451 |
+
|
| 1452 |
+
--> returns [1,] * b_cudagraph
|
| 1453 |
+
Here b <= b_cudagraph. We want to make sure that the seq_len is one-padded to
|
| 1454 |
+
b_cudagraph.
|
| 1455 |
+
|
| 1456 |
+
# TODO: I could see one possible issue with this approach in the future.
|
| 1457 |
+
# If we have b < b_cudagraph we now one-pad. However, we don't pad the cache location
|
| 1458 |
+
# information. What could happen is that the for the padded sequences the cache location
|
| 1459 |
+
# tensors point to allocated pages. This could lead to a situation where we write into
|
| 1460 |
+
# allocated cache pages polluting the cache of other sequences. Now this is not an issue
|
| 1461 |
+
# if we write the dummy sequences into unallocated cache pages... One fix could be to
|
| 1462 |
+
# pad not only the seq len but also pad the cache locations by just repeating the last
|
| 1463 |
+
# valid cache location in the batch. This would ensure that the dummy sequences just
|
| 1464 |
+
# repeats valid computation...
|
| 1465 |
+
"""
|
| 1466 |
+
_, s = input_ids.shape[:2]
|
| 1467 |
+
num_seq = cls._get_sanitized_num_sequences(input_ids, seq_len)
|
| 1468 |
+
if s > 1:
|
| 1469 |
+
return seq_len[:num_seq].detach().clone()
|
| 1470 |
+
else:
|
| 1471 |
+
return torch.ones(num_seq, dtype=seq_len.dtype, device=seq_len.device)
|
| 1472 |
+
|
| 1473 |
+
@staticmethod
|
| 1474 |
+
def _get_sanitized_num_sequences(input_ids: torch.Tensor, seq_len: torch.Tensor) -> int:
|
| 1475 |
+
"""Get number of sequences.
|
| 1476 |
+
|
| 1477 |
+
We makes sure that this function is compatible with both torch graph capture and cudagraph.
|
| 1478 |
+
Both can be a bit temparamental when trying to extract the number of sequences from a tensor
|
| 1479 |
+
with max_batch_size or max_batch_size*max_seq_len.
|
| 1480 |
+
"""
|
| 1481 |
+
b, s = input_ids.shape[:2]
|
| 1482 |
+
if s > 1:
|
| 1483 |
+
num_seq = torch.sum(seq_len > 0)
|
| 1484 |
+
assert seq_len[num_seq:].sum() == 0, "seq_len should be zero-padded"
|
| 1485 |
+
else:
|
| 1486 |
+
num_seq = b
|
| 1487 |
+
return num_seq
|
| 1488 |
+
|
| 1489 |
+
def to(self, *args, **kwargs) -> None:
|
| 1490 |
+
for f in fields(self):
|
| 1491 |
+
val = getattr(self, f.name)
|
| 1492 |
+
if isinstance(val, torch.Tensor):
|
| 1493 |
+
setattr(self, f.name, val.to(*args, **kwargs))
|
| 1494 |
+
|
| 1495 |
+
def sync(self, other: "SequenceInfo") -> None:
|
| 1496 |
+
for f in fields(self):
|
| 1497 |
+
val = getattr(self, f.name)
|
| 1498 |
+
val_other = getattr(other, f.name)
|
| 1499 |
+
if f.name == "input_ids":
|
| 1500 |
+
setattr(self, f.name, val_other.to(self.device))
|
| 1501 |
+
elif f.name == "_sequence_lengths":
|
| 1502 |
+
self._sequence_lengths = val_other
|
| 1503 |
+
elif isinstance(val, torch.Tensor):
|
| 1504 |
+
val[: len(val_other)] = val_other.to(self.device)
|
| 1505 |
+
else:
|
| 1506 |
+
assert val == val_other, f"Field {f.name} mismatch: {val} != {val_other}."
|
| 1507 |
+
|
| 1508 |
+
def reset(self) -> None:
|
| 1509 |
+
"""Reset the sequence information.
|
| 1510 |
+
|
| 1511 |
+
After reset the sequence information should correspond to a "generate-only" batch of
|
| 1512 |
+
sequences (b, s==1) without cache history.
|
| 1513 |
+
"""
|
| 1514 |
+
# set a dummy sequence corresponding to a generate-only batch
|
| 1515 |
+
self.nest_sequences(torch.zeros(self.max_batch_size, 1, dtype=torch.int))
|
| 1516 |
+
|
| 1517 |
+
# reset cache information
|
| 1518 |
+
self.input_pos.zero_()
|
| 1519 |
+
self.cache_loc[:] = torch.arange(self.num_pages, dtype=torch.int, device=self.device)
|
| 1520 |
+
self.pages_per_seq.fill_(1)
|
| 1521 |
+
|
| 1522 |
+
def _set_example_sequence(self) -> None:
|
| 1523 |
+
"""Set an example sequence for export purposes."""
|
| 1524 |
+
self.reset()
|
| 1525 |
+
input_ids = torch.ones(
|
| 1526 |
+
min(2, self.max_batch_size),
|
| 1527 |
+
min(4, self.max_seq_len),
|
| 1528 |
+
dtype=torch.int,
|
| 1529 |
+
device=self.device,
|
| 1530 |
+
)
|
| 1531 |
+
self.nest_sequences(input_ids)
|
| 1532 |
+
self.input_ids = input_ids
|
| 1533 |
+
|
| 1534 |
+
def _set_max_num_tokens_sample(self) -> None:
|
| 1535 |
+
"""Set an example sequence with max_num_tokens."""
|
| 1536 |
+
self.reset()
|
| 1537 |
+
seq_len = self.max_num_tokens // self.max_batch_size
|
| 1538 |
+
input_ids = torch.ones(
|
| 1539 |
+
self.max_batch_size,
|
| 1540 |
+
seq_len,
|
| 1541 |
+
dtype=torch.int,
|
| 1542 |
+
device=self.device,
|
| 1543 |
+
)
|
| 1544 |
+
self.pages_per_seq.fill_(seq_len // self.page_size)
|
| 1545 |
+
self.nest_sequences(input_ids)
|
| 1546 |
+
|
| 1547 |
+
def _set_generate_only_batch(self) -> None:
|
| 1548 |
+
"""Set an example sequence for generate-only batch."""
|
| 1549 |
+
self.reset()
|
| 1550 |
+
self.nest_sequences([[1]] * self.max_batch_size)
|
| 1551 |
+
|
| 1552 |
+
def nest_sequences(self, input_ids: Sequence[Sequence[int]]) -> None:
|
| 1553 |
+
"""Create and store a flattened list of input_ids from the provided list of sequences.
|
| 1554 |
+
|
| 1555 |
+
This i/f will also update any relevant sequence information.
|
| 1556 |
+
"""
|
| 1557 |
+
# set new sequence lengths
|
| 1558 |
+
seq_lens = [len(ids) for ids in input_ids]
|
| 1559 |
+
self.seq_len.zero_()
|
| 1560 |
+
self.seq_len[: len(seq_lens)].copy_(torch.tensor(seq_lens), non_blocking=True)
|
| 1561 |
+
|
| 1562 |
+
# set new input_ids as new tensor from flattened input_ids
|
| 1563 |
+
ids_tnsr_list = [
|
| 1564 |
+
lst.detach() if isinstance(lst, torch.Tensor) else torch.tensor(lst, dtype=torch.int)
|
| 1565 |
+
for lst in input_ids
|
| 1566 |
+
]
|
| 1567 |
+
self.input_ids = torch.cat(ids_tnsr_list, dim=0).to(self.device)
|
| 1568 |
+
|
| 1569 |
+
# set derivative properties
|
| 1570 |
+
self._sequence_lengths = seq_lens
|
| 1571 |
+
|
| 1572 |
+
# use [b,1] shape to indicate generate-only batch, otherwise use [1,total_len]
|
| 1573 |
+
if self.is_generate:
|
| 1574 |
+
self.input_ids = self.input_ids.view(-1, 1, *self.input_ids.shape[1:])
|
| 1575 |
+
else:
|
| 1576 |
+
self.input_ids = self.input_ids.view(1, -1, *self.input_ids.shape[1:])
|
| 1577 |
+
|
| 1578 |
+
def unnest_sequences(self, t_nested: torch.Tensor) -> List[torch.Tensor]:
|
| 1579 |
+
t_squeezed = t_nested.squeeze(1) if self.is_generate else t_nested.squeeze(0)
|
| 1580 |
+
return list(torch.split(t_squeezed, self.sequence_lengths))
|
| 1581 |
+
|
| 1582 |
+
def update_pos(self, seq_len: Union[torch.Tensor, List[int], int], reset: bool = False) -> None:
|
| 1583 |
+
"""Update the starting position for each sequence in the cache.
|
| 1584 |
+
|
| 1585 |
+
If ``reset=True`, ``input_pos`` will be reset to zero before updating.
|
| 1586 |
+
"""
|
| 1587 |
+
if not isinstance(seq_len, torch.Tensor):
|
| 1588 |
+
seq_len = torch.tensor(seq_len, dtype=torch.int)
|
| 1589 |
+
bs = len(seq_len) if seq_len.dim() > 0 else self.max_batch_size
|
| 1590 |
+
|
| 1591 |
+
if reset:
|
| 1592 |
+
self.input_pos[:bs] = seq_len.to(self.device)
|
| 1593 |
+
else:
|
| 1594 |
+
self.input_pos[:bs] += seq_len.to(self.device)
|
| 1595 |
+
|
| 1596 |
+
def assign_cache_loc(self, page_assignments: Sequence[Sequence[int]]) -> None:
|
| 1597 |
+
"""Set the cache location and pages_per_seq tensors from page assignments."""
|
| 1598 |
+
cache_loc_flat = torch.tensor(
|
| 1599 |
+
[p_idx for pages in page_assignments for p_idx in pages], dtype=torch.int
|
| 1600 |
+
)
|
| 1601 |
+
self.cache_loc[: len(cache_loc_flat)].copy_(cache_loc_flat, non_blocking=True)
|
| 1602 |
+
|
| 1603 |
+
pages_per_seq = torch.tensor([len(p) for p in page_assignments], dtype=torch.int)
|
| 1604 |
+
self.pages_per_seq[: len(pages_per_seq)].copy_(pages_per_seq, non_blocking=True)
|
| 1605 |
+
|
| 1606 |
+
|
| 1607 |
+
Constant = Union[int, float, str, None]
|
| 1608 |
+
|
| 1609 |
+
|
| 1610 |
+
class MHACallable(Protocol):
|
| 1611 |
+
def __call__(
|
| 1612 |
+
self,
|
| 1613 |
+
*qkv_metadata_and_caches: Union[torch.Tensor, Constant],
|
| 1614 |
+
) -> torch.Tensor: ...
|
| 1615 |
+
|
| 1616 |
+
|
| 1617 |
+
class PrepareMetadataCallable(Protocol):
|
| 1618 |
+
def __call__(
|
| 1619 |
+
self,
|
| 1620 |
+
input_ids: torch.Tensor,
|
| 1621 |
+
seq_len: torch.Tensor,
|
| 1622 |
+
input_pos: torch.Tensor,
|
| 1623 |
+
cache_loc: torch.Tensor,
|
| 1624 |
+
pages_per_seq: torch.Tensor,
|
| 1625 |
+
page_size: int,
|
| 1626 |
+
) -> List[torch.Tensor]: ...
|
| 1627 |
+
|
| 1628 |
+
|
| 1629 |
+
class GetCacheCallable(Protocol):
|
| 1630 |
+
def __call__(self, sequence_info: SequenceInfo) -> torch.Tensor: ...
|
| 1631 |
+
|
| 1632 |
+
|
| 1633 |
+
class GetBufferCallable(GetCacheCallable):
|
| 1634 |
+
pass
|
| 1635 |
+
|
| 1636 |
+
|
| 1637 |
+
class GetAttentionInfo(Protocol):
|
| 1638 |
+
def __call__() -> AttentionInfo: ...
|
| 1639 |
+
|
| 1640 |
+
|
| 1641 |
+
CacheInitializerDict = Dict[str, GetCacheCallable]
|
| 1642 |
+
BufferInitializerDict = Dict[str, GetBufferCallable]
|
| 1643 |
+
|
| 1644 |
+
|
| 1645 |
+
class AttentionDescriptor(ABC):
|
| 1646 |
+
"""An interface to define a functional attention operator.
|
| 1647 |
+
|
| 1648 |
+
The main logic is contained with the actual attention op as well as the prepare_metadata op. The
|
| 1649 |
+
prepare_metadata op is responsible for converting the standardized sequence info into metadata
|
| 1650 |
+
specific to the attention op.
|
| 1651 |
+
"""
|
| 1652 |
+
|
| 1653 |
+
@classmethod
|
| 1654 |
+
@abstractmethod
|
| 1655 |
+
def is_paged(cls) -> bool:
|
| 1656 |
+
"""Return if the attention op is paged or not."""
|
| 1657 |
+
|
| 1658 |
+
@classmethod
|
| 1659 |
+
def get_attention_op(cls) -> Tuple[MHACallable, int]:
|
| 1660 |
+
"""Get the attention op and the number of arguments corresponding to qkv.
|
| 1661 |
+
|
| 1662 |
+
The attention_op should follow the below signature:
|
| 1663 |
+
|
| 1664 |
+
```
|
| 1665 |
+
def attention_op(
|
| 1666 |
+
*qkv, # list of tensors corresponding to Q, K, V as in original op
|
| 1667 |
+
*metadata, # global info about the sequences as returned by the prepare_metadata op
|
| 1668 |
+
*caches, # contains layer-specific caches per provided cache initializers
|
| 1669 |
+
*buffers, # global buffers used by the attention op as provided by buffer initializers
|
| 1670 |
+
*constants, # basic arguments (int, float, str, None) added as CONSTANTS in the graph
|
| 1671 |
+
) -> torch.Tensor: ...
|
| 1672 |
+
```
|
| 1673 |
+
|
| 1674 |
+
**Note that the attention op should be a valid torch custom op, which comes with
|
| 1675 |
+
restrictions on the supported types in the signature.**
|
| 1676 |
+
|
| 1677 |
+
**Note that the `qkv` tuple should be consistent across both the cached attention
|
| 1678 |
+
op and the op that it is replacing.**
|
| 1679 |
+
|
| 1680 |
+
"""
|
| 1681 |
+
raise NotImplementedError
|
| 1682 |
+
|
| 1683 |
+
@classmethod
|
| 1684 |
+
@abstractmethod
|
| 1685 |
+
def get_prepare_metadata_op(cls) -> Tuple[PrepareMetadataCallable, int]:
|
| 1686 |
+
"""Get the prepare_metadata op.
|
| 1687 |
+
|
| 1688 |
+
The prepare_metadata op should follow the below signature:
|
| 1689 |
+
|
| 1690 |
+
```
|
| 1691 |
+
def prepare_metadata(
|
| 1692 |
+
input_ids: torch.Tensor,
|
| 1693 |
+
seq_len: torch.Tensor,
|
| 1694 |
+
input_pos: torch.Tensor,
|
| 1695 |
+
cache_loc: torch.Tensor,
|
| 1696 |
+
) -> List[torch.Tensor]: ...
|
| 1697 |
+
```
|
| 1698 |
+
The metadata should contain all necessary global information required for the underlying
|
| 1699 |
+
attention op to process the input sequence and the returned list of tensors will be passed
|
| 1700 |
+
on to each invocation of the attention op in the graph.
|
| 1701 |
+
|
| 1702 |
+
prepare_metadata is called once at the beginning of the forward pass.
|
| 1703 |
+
|
| 1704 |
+
**Note that the prepare_metadata op should be a valid torch custom op, which comes with
|
| 1705 |
+
restrictions on the supported types in the signature.**
|
| 1706 |
+
"""
|
| 1707 |
+
return NotImplementedError
|
| 1708 |
+
|
| 1709 |
+
@classmethod
|
| 1710 |
+
@abstractmethod
|
| 1711 |
+
def get_cache_initializers(cls, get_info: GetAttentionInfo) -> CacheInitializerDict:
|
| 1712 |
+
"""Provide a dictionary of function pointers that can be used to initialize the caches.
|
| 1713 |
+
|
| 1714 |
+
The key corresponds to the argument name used in the attention op signature. The function
|
| 1715 |
+
key doesn't need to be unique across multiple attention nodes in the graph. The key used to
|
| 1716 |
+
describe the cache in the graph will be patched with the attention node index to ensure
|
| 1717 |
+
uniqueness.
|
| 1718 |
+
|
| 1719 |
+
``get_cache_initializers`` will be called *once* after the model initialization and before
|
| 1720 |
+
the initial forward pass for each attention op detected in the graph. The caches will be
|
| 1721 |
+
managed by the global CacheManager and passed back to the attention op during the forward
|
| 1722 |
+
pass.
|
| 1723 |
+
|
| 1724 |
+
If the cache initializer requires information about the attention op, the ``get_info``
|
| 1725 |
+
function can be called **inside** the cache initializer to retrieve the necessary
|
| 1726 |
+
information.
|
| 1727 |
+
"""
|
| 1728 |
+
raise NotImplementedError
|
| 1729 |
+
|
| 1730 |
+
@classmethod
|
| 1731 |
+
def get_global_buffer_initializers(cls, get_info: GetAttentionInfo) -> BufferInitializerDict:
|
| 1732 |
+
"""Provide a dictionary of function pointers that can be used to initialize buffers.
|
| 1733 |
+
|
| 1734 |
+
The key corresponds to the buffer name used in the graph module and will **not**
|
| 1735 |
+
be patched unlike a cache key. Hence, it is a **global** key that is shared across all
|
| 1736 |
+
attention ops in the model much like a regular buffer in an nn.Module. That means if this
|
| 1737 |
+
i/f is called for multiple attention ops, the same buffer will be shared across all of them
|
| 1738 |
+
if this function provides the same key multiple times.
|
| 1739 |
+
|
| 1740 |
+
Buffers are initialize *once* after the model initialization and before the initial forward
|
| 1741 |
+
pass for each attention op detected in the graph. The buffer will be managed by the global
|
| 1742 |
+
CacheManager and passed back to the attention op during the forward pass.
|
| 1743 |
+
|
| 1744 |
+
If the buffer initializer requires information about the attention op, the ``get_info``
|
| 1745 |
+
function can be called **inside** the buffer initializer to retrieve the necessary
|
| 1746 |
+
information.
|
| 1747 |
+
"""
|
| 1748 |
+
return {}
|
| 1749 |
+
|
| 1750 |
+
@classmethod
|
| 1751 |
+
def get_constants(cls, attention_info: AttentionInfo) -> List[Constant]:
|
| 1752 |
+
"""Provide a list of constant arguments to be passed to the attention op.
|
| 1753 |
+
|
| 1754 |
+
The constant arguments are passed to the attention op as additional arguments after the
|
| 1755 |
+
caches and buffers. The constants are expected to be of type int, float, str, or None.
|
| 1756 |
+
"""
|
| 1757 |
+
return []
|
| 1758 |
+
|
| 1759 |
+
|
| 1760 |
+
class AttentionRegistry:
|
| 1761 |
+
"""A simple registry to look up different attention implementations."""
|
| 1762 |
+
|
| 1763 |
+
_attention_registry: Dict[str, Type["AttentionDescriptor"]] = {}
|
| 1764 |
+
|
| 1765 |
+
@classmethod
|
| 1766 |
+
def register(cls, kernel_source: str) -> Type["AttentionDescriptor"]:
|
| 1767 |
+
def decorator(attention_cls: Type["AttentionDescriptor"]):
|
| 1768 |
+
assert kernel_source not in cls._attention_registry, (
|
| 1769 |
+
f"Attention source {kernel_source} already registered."
|
| 1770 |
+
)
|
| 1771 |
+
cls._attention_registry[kernel_source] = attention_cls
|
| 1772 |
+
return attention_cls
|
| 1773 |
+
|
| 1774 |
+
return decorator
|
| 1775 |
+
|
| 1776 |
+
@classmethod
|
| 1777 |
+
def get(cls, kernel_source: str) -> Type["AttentionDescriptor"]:
|
| 1778 |
+
assert cls.has(kernel_source), f"Attention source {kernel_source} not registered."
|
| 1779 |
+
return cls._attention_registry[kernel_source]
|
| 1780 |
+
|
| 1781 |
+
@classmethod
|
| 1782 |
+
def has(cls, kernel_source: str) -> bool:
|
| 1783 |
+
return kernel_source in cls._attention_registry
|
| 1784 |
+
|
| 1785 |
+
|
| 1786 |
+
|
| 1787 |
+
@torch.library.custom_op("attention::scaled_dot_product_attention", mutates_args=())
|
| 1788 |
+
def scaled_dot_product_attention(
|
| 1789 |
+
query: torch.Tensor,
|
| 1790 |
+
key: torch.Tensor,
|
| 1791 |
+
value: torch.Tensor,
|
| 1792 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 1793 |
+
dropout_p: float = 0.0,
|
| 1794 |
+
is_causal: bool = False,
|
| 1795 |
+
scale: Optional[float] = None,
|
| 1796 |
+
) -> torch.Tensor:
|
| 1797 |
+
"""A carbon copy of torch.nn.functional.scaled_dot_product_attention as custom op.
|
| 1798 |
+
|
| 1799 |
+
Using this custom op instead of using the functional directly ensures consistent representation
|
| 1800 |
+
of the vanilla sdpa in a graph.
|
| 1801 |
+
"""
|
| 1802 |
+
return F.scaled_dot_product_attention(
|
| 1803 |
+
query,
|
| 1804 |
+
key,
|
| 1805 |
+
value,
|
| 1806 |
+
attn_mask=attn_mask,
|
| 1807 |
+
dropout_p=dropout_p,
|
| 1808 |
+
is_causal=is_causal,
|
| 1809 |
+
scale=scale,
|
| 1810 |
+
)
|
| 1811 |
+
|
| 1812 |
+
|
| 1813 |
+
@scaled_dot_product_attention.register_fake
|
| 1814 |
+
def scaled_dot_product_attention_fake(
|
| 1815 |
+
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None
|
| 1816 |
+
):
|
| 1817 |
+
"""Fake implementation of scaled_dot_product_attention."""
|
| 1818 |
+
return torch.empty_like(query)
|
| 1819 |
+
|
| 1820 |
+
|
| 1821 |
+
def _generate_mha(
|
| 1822 |
+
q: torch.Tensor,
|
| 1823 |
+
k: torch.Tensor,
|
| 1824 |
+
v: torch.Tensor,
|
| 1825 |
+
k_cache: torch.Tensor,
|
| 1826 |
+
v_cache: torch.Tensor,
|
| 1827 |
+
cache_locs: torch.Tensor,
|
| 1828 |
+
input_pos: torch.Tensor,
|
| 1829 |
+
out: torch.Tensor,
|
| 1830 |
+
):
|
| 1831 |
+
b, (n_heads, q_d_head) = q.shape[0], q.shape[-2:]
|
| 1832 |
+
max_seq_len, n_kv_heads = k_cache.shape[1:3]
|
| 1833 |
+
v_d_head = v.shape[-1]
|
| 1834 |
+
device = q.device
|
| 1835 |
+
|
| 1836 |
+
HEAD_BLOCK_SIZE = max(16, triton.next_power_of_2(n_heads // n_kv_heads))
|
| 1837 |
+
SEQ_BLOCK_SIZE = 256
|
| 1838 |
+
num_blocks = (max_seq_len + SEQ_BLOCK_SIZE - 1) // SEQ_BLOCK_SIZE
|
| 1839 |
+
|
| 1840 |
+
stage1_output_values = torch.empty(
|
| 1841 |
+
b, n_heads, num_blocks, v_d_head, device=device, dtype=torch.float32
|
| 1842 |
+
)
|
| 1843 |
+
stage1_output_logsumexp = torch.empty(
|
| 1844 |
+
b, n_heads, num_blocks, device=device, dtype=torch.float32
|
| 1845 |
+
) - float("inf")
|
| 1846 |
+
|
| 1847 |
+
(
|
| 1848 |
+
update_kv_cache[(b, n_kv_heads, 1)](
|
| 1849 |
+
k,
|
| 1850 |
+
v,
|
| 1851 |
+
None,
|
| 1852 |
+
None,
|
| 1853 |
+
k_cache,
|
| 1854 |
+
v_cache,
|
| 1855 |
+
input_pos,
|
| 1856 |
+
cache_locs,
|
| 1857 |
+
max_seq_len,
|
| 1858 |
+
n_kv_heads,
|
| 1859 |
+
q_d_head,
|
| 1860 |
+
v_d_head,
|
| 1861 |
+
1,
|
| 1862 |
+
GENERATE_ONLY=True,
|
| 1863 |
+
),
|
| 1864 |
+
)
|
| 1865 |
+
|
| 1866 |
+
gqa_attention_kv_stage1[
|
| 1867 |
+
(
|
| 1868 |
+
b,
|
| 1869 |
+
n_kv_heads,
|
| 1870 |
+
num_blocks,
|
| 1871 |
+
)
|
| 1872 |
+
](
|
| 1873 |
+
q,
|
| 1874 |
+
k_cache,
|
| 1875 |
+
v_cache,
|
| 1876 |
+
cache_locs,
|
| 1877 |
+
input_pos,
|
| 1878 |
+
stage1_output_values,
|
| 1879 |
+
stage1_output_logsumexp,
|
| 1880 |
+
num_blocks,
|
| 1881 |
+
max_seq_len,
|
| 1882 |
+
n_heads,
|
| 1883 |
+
n_kv_heads,
|
| 1884 |
+
q_d_head,
|
| 1885 |
+
v_d_head,
|
| 1886 |
+
SEQ_BLOCK_SIZE,
|
| 1887 |
+
HEAD_BLOCK_SIZE,
|
| 1888 |
+
)
|
| 1889 |
+
attention_kv_stage2[(b, n_heads, 1)](
|
| 1890 |
+
stage1_output_values,
|
| 1891 |
+
stage1_output_logsumexp,
|
| 1892 |
+
out,
|
| 1893 |
+
input_pos,
|
| 1894 |
+
num_blocks,
|
| 1895 |
+
n_heads,
|
| 1896 |
+
v_d_head,
|
| 1897 |
+
SEQ_BLOCK_SIZE,
|
| 1898 |
+
)
|
| 1899 |
+
|
| 1900 |
+
|
| 1901 |
+
def _context_mha(
|
| 1902 |
+
q: torch.Tensor,
|
| 1903 |
+
k: torch.Tensor,
|
| 1904 |
+
v: torch.Tensor,
|
| 1905 |
+
k_cache: torch.Tensor,
|
| 1906 |
+
v_cache: torch.Tensor,
|
| 1907 |
+
out: torch.Tensor,
|
| 1908 |
+
):
|
| 1909 |
+
b, s, n_heads, q_d_head = q.shape
|
| 1910 |
+
max_seq_len, n_kv_heads = k_cache.shape[1:3]
|
| 1911 |
+
v_d_head = v.shape[-1]
|
| 1912 |
+
|
| 1913 |
+
SEQ_BLOCK = 128
|
| 1914 |
+
softmax_scale = 1.0 / math.sqrt(q_d_head)
|
| 1915 |
+
grid = (b, n_heads, (s + SEQ_BLOCK - 1) // SEQ_BLOCK)
|
| 1916 |
+
context_attention_kv[grid](
|
| 1917 |
+
q,
|
| 1918 |
+
k,
|
| 1919 |
+
v,
|
| 1920 |
+
k_cache,
|
| 1921 |
+
v_cache,
|
| 1922 |
+
s,
|
| 1923 |
+
out,
|
| 1924 |
+
softmax_scale,
|
| 1925 |
+
n_heads,
|
| 1926 |
+
n_kv_heads,
|
| 1927 |
+
q_d_head,
|
| 1928 |
+
v_d_head,
|
| 1929 |
+
SEQ_BLOCK,
|
| 1930 |
+
max_seq_len,
|
| 1931 |
+
num_stages=2,
|
| 1932 |
+
)
|
| 1933 |
+
|
| 1934 |
+
|
| 1935 |
+
@torch.library.custom_op("attention::fused_mha_with_cache", mutates_args=())
|
| 1936 |
+
def fused_mha_with_cache(
|
| 1937 |
+
q: torch.Tensor,
|
| 1938 |
+
k: torch.Tensor,
|
| 1939 |
+
v: torch.Tensor,
|
| 1940 |
+
input_pos: torch.Tensor,
|
| 1941 |
+
k_cache: torch.Tensor,
|
| 1942 |
+
v_cache: torch.Tensor,
|
| 1943 |
+
freqs_cis: Optional[torch.Tensor],
|
| 1944 |
+
) -> torch.Tensor:
|
| 1945 |
+
"""Fused MHA with cache that takes raw input from q, k, v GEMMs."""
|
| 1946 |
+
# b, s info
|
| 1947 |
+
b, s = q.shape[:2]
|
| 1948 |
+
head_dim = k_cache.shape[-1]
|
| 1949 |
+
|
| 1950 |
+
# reshapes with num_heads and head_dim
|
| 1951 |
+
q = q.view(b, s, -1, head_dim)
|
| 1952 |
+
k = k.view(b, s, -1, head_dim)
|
| 1953 |
+
v = v.view(b, s, -1, head_dim)
|
| 1954 |
+
|
| 1955 |
+
# rope embedding
|
| 1956 |
+
if freqs_cis is not None:
|
| 1957 |
+
q = torch.ops.rope.apply_rope_with_input_pos(q, freqs_cis, input_pos, "bsnd")
|
| 1958 |
+
k = torch.ops.rope.apply_rope_with_input_pos(k, freqs_cis, input_pos, "bsnd")
|
| 1959 |
+
|
| 1960 |
+
# attention (assumed layout is bsnd)
|
| 1961 |
+
y = torch.empty_like(q)
|
| 1962 |
+
if s > 1:
|
| 1963 |
+
# context phase
|
| 1964 |
+
_context_mha(q, k, v, k_cache, v_cache, y)
|
| 1965 |
+
else:
|
| 1966 |
+
# generate phase
|
| 1967 |
+
cache_locs = torch.arange(0, b, device=q.device, dtype=torch.int32)
|
| 1968 |
+
_generate_mha(q, k, v, k_cache, v_cache, cache_locs, input_pos, y)
|
| 1969 |
+
|
| 1970 |
+
return y.view(b, s, -1) # [b,s,n*h_d]
|
| 1971 |
+
|
| 1972 |
+
|
| 1973 |
+
@fused_mha_with_cache.register_fake
|
| 1974 |
+
def fused_mha_fake(
|
| 1975 |
+
q: torch.Tensor,
|
| 1976 |
+
k: torch.Tensor,
|
| 1977 |
+
v: torch.Tensor,
|
| 1978 |
+
input_pos: torch.Tensor,
|
| 1979 |
+
k_cache: torch.Tensor,
|
| 1980 |
+
v_cache: torch.Tensor,
|
| 1981 |
+
freqs_cis: torch.Tensor,
|
| 1982 |
+
):
|
| 1983 |
+
return torch.empty_like(q.contiguous())
|
| 1984 |
+
|
| 1985 |
+
|
| 1986 |
+
def _flattened_context_mha(
|
| 1987 |
+
q: torch.Tensor,
|
| 1988 |
+
k: torch.Tensor,
|
| 1989 |
+
v: torch.Tensor,
|
| 1990 |
+
input_pos: torch.Tensor,
|
| 1991 |
+
cache_loc: torch.Tensor,
|
| 1992 |
+
k_cache: torch.Tensor,
|
| 1993 |
+
v_cache: torch.Tensor,
|
| 1994 |
+
seq_len: torch.Tensor,
|
| 1995 |
+
seq_start: torch.Tensor,
|
| 1996 |
+
out: torch.Tensor,
|
| 1997 |
+
) -> None:
|
| 1998 |
+
# NOTE: s_total == sum(seq_len)
|
| 1999 |
+
s_total, n_heads, q_d_head = q.shape
|
| 2000 |
+
max_cache_seq_len, n_kv_heads = k_cache.shape[1:3]
|
| 2001 |
+
v_d_head = v.shape[-1]
|
| 2002 |
+
BATCH_SIZE: int = len(input_pos)
|
| 2003 |
+
SEQ_BLOCK = 32
|
| 2004 |
+
(
|
| 2005 |
+
update_kv_cache[(BATCH_SIZE, n_kv_heads, (max(seq_len) + SEQ_BLOCK - 1) // SEQ_BLOCK)](
|
| 2006 |
+
k,
|
| 2007 |
+
v,
|
| 2008 |
+
seq_len,
|
| 2009 |
+
seq_start,
|
| 2010 |
+
k_cache,
|
| 2011 |
+
v_cache,
|
| 2012 |
+
input_pos,
|
| 2013 |
+
cache_loc,
|
| 2014 |
+
max_cache_seq_len,
|
| 2015 |
+
n_kv_heads,
|
| 2016 |
+
q_d_head,
|
| 2017 |
+
v_d_head,
|
| 2018 |
+
32,
|
| 2019 |
+
GENERATE_ONLY=False,
|
| 2020 |
+
),
|
| 2021 |
+
)
|
| 2022 |
+
# TODO: use input_pos to get the correct cache locations
|
| 2023 |
+
softmax_scale = 1.0 / math.sqrt(q_d_head)
|
| 2024 |
+
grid = (BATCH_SIZE, n_heads, (max(seq_len) + SEQ_BLOCK - 1) // SEQ_BLOCK)
|
| 2025 |
+
context_attention_kv_flattened[grid](
|
| 2026 |
+
q,
|
| 2027 |
+
seq_len,
|
| 2028 |
+
seq_start,
|
| 2029 |
+
k_cache,
|
| 2030 |
+
v_cache,
|
| 2031 |
+
input_pos,
|
| 2032 |
+
cache_loc,
|
| 2033 |
+
out,
|
| 2034 |
+
softmax_scale,
|
| 2035 |
+
n_heads,
|
| 2036 |
+
n_kv_heads,
|
| 2037 |
+
q_d_head,
|
| 2038 |
+
v_d_head,
|
| 2039 |
+
SEQ_BLOCK,
|
| 2040 |
+
max_cache_seq_len,
|
| 2041 |
+
num_stages=2,
|
| 2042 |
+
)
|
| 2043 |
+
|
| 2044 |
+
|
| 2045 |
+
@torch.library.custom_op("attention::fused_flattened_mha_with_cache", mutates_args=())
|
| 2046 |
+
def fused_flattened_mha_with_cache(
|
| 2047 |
+
# Q, K, V
|
| 2048 |
+
q: torch.Tensor,
|
| 2049 |
+
k: torch.Tensor,
|
| 2050 |
+
v: torch.Tensor,
|
| 2051 |
+
# METADATA
|
| 2052 |
+
seq_len: torch.Tensor,
|
| 2053 |
+
input_pos: torch.Tensor,
|
| 2054 |
+
cache_loc: torch.Tensor,
|
| 2055 |
+
seq_start: torch.Tensor,
|
| 2056 |
+
# CACHES
|
| 2057 |
+
k_cache: torch.Tensor,
|
| 2058 |
+
v_cache: torch.Tensor,
|
| 2059 |
+
# BUFFERS
|
| 2060 |
+
freqs_cis: torch.Tensor,
|
| 2061 |
+
# CONSTANTS
|
| 2062 |
+
# <none>
|
| 2063 |
+
) -> torch.Tensor:
|
| 2064 |
+
"""Flattened & fused MHA with cache that takes raw input from q, k, v GEMMs.
|
| 2065 |
+
|
| 2066 |
+
NOTE: this op can also handle seq_len==0, which might be useful for CUDAGRAPH.
|
| 2067 |
+
"""
|
| 2068 |
+
# b, s info
|
| 2069 |
+
# NOTE: b, s are just the shapes of the input tensor q; not necessarily the number of sequences.
|
| 2070 |
+
# Generally speaking, we expect one of two cases here:
|
| 2071 |
+
# 1. b > 0, s==1: this indicates a generate-only batch of tokens.
|
| 2072 |
+
# 2. b==1, s > 0: this indicates a mixed context+generate phase. The actual number of sequences
|
| 2073 |
+
# and number of tokens per sequence are encoded in seq_len and seq_start.
|
| 2074 |
+
head_dim = k_cache.shape[-1]
|
| 2075 |
+
b, s, d = q.shape
|
| 2076 |
+
|
| 2077 |
+
# reshapes with num_heads and head_dim
|
| 2078 |
+
if s == 1:
|
| 2079 |
+
bs_view = (b, s)
|
| 2080 |
+
else:
|
| 2081 |
+
bs_view = (b * s,)
|
| 2082 |
+
q = q.view(*bs_view, q.shape[2] // head_dim, head_dim)
|
| 2083 |
+
k = k.view(*bs_view, k.shape[2] // head_dim, head_dim)
|
| 2084 |
+
v = v.view(*bs_view, v.shape[2] // head_dim, head_dim)
|
| 2085 |
+
|
| 2086 |
+
# rope embedding for generate-only or mixed
|
| 2087 |
+
if freqs_cis is not None and freqs_cis.numel() > 0:
|
| 2088 |
+
if s == 1:
|
| 2089 |
+
rope_args = (freqs_cis, input_pos, "bsnd")
|
| 2090 |
+
fn_rope = torch.ops.rope.apply_rope_with_input_pos
|
| 2091 |
+
else:
|
| 2092 |
+
rope_args = (freqs_cis, input_pos, seq_len, seq_start)
|
| 2093 |
+
fn_rope = torch.ops.rope.apply_rope_on_flattened_inputs
|
| 2094 |
+
q = fn_rope(q, *rope_args)
|
| 2095 |
+
k = fn_rope(k, *rope_args)
|
| 2096 |
+
|
| 2097 |
+
# run attention
|
| 2098 |
+
y = torch.empty_like(q)
|
| 2099 |
+
if s == 1:
|
| 2100 |
+
# generate-only phase
|
| 2101 |
+
_generate_mha(q, k, v, k_cache, v_cache, cache_loc, input_pos, y)
|
| 2102 |
+
else:
|
| 2103 |
+
# mixed context + generate phase
|
| 2104 |
+
_flattened_context_mha(
|
| 2105 |
+
q,
|
| 2106 |
+
k,
|
| 2107 |
+
v,
|
| 2108 |
+
input_pos,
|
| 2109 |
+
cache_loc,
|
| 2110 |
+
k_cache,
|
| 2111 |
+
v_cache,
|
| 2112 |
+
seq_len,
|
| 2113 |
+
seq_start,
|
| 2114 |
+
y,
|
| 2115 |
+
)
|
| 2116 |
+
|
| 2117 |
+
return y.view(b, s, d) # [b,s,n*h_d]
|
| 2118 |
+
|
| 2119 |
+
|
| 2120 |
+
@fused_flattened_mha_with_cache.register_fake
|
| 2121 |
+
def fused_flattened_mha_fake(
|
| 2122 |
+
q: torch.Tensor,
|
| 2123 |
+
k: torch.Tensor,
|
| 2124 |
+
v: torch.Tensor,
|
| 2125 |
+
seq_len: torch.Tensor,
|
| 2126 |
+
input_pos: torch.Tensor,
|
| 2127 |
+
cache_loc: torch.Tensor,
|
| 2128 |
+
seq_start: torch.Tensor,
|
| 2129 |
+
k_cache: torch.Tensor,
|
| 2130 |
+
v_cache: torch.Tensor,
|
| 2131 |
+
freqs_cis: torch.Tensor,
|
| 2132 |
+
):
|
| 2133 |
+
return torch.empty_like(q.contiguous())
|
| 2134 |
+
|
| 2135 |
+
|
| 2136 |
+
def _generate_mha_rope_fusion(
|
| 2137 |
+
q: torch.Tensor,
|
| 2138 |
+
k: torch.Tensor,
|
| 2139 |
+
v: torch.Tensor,
|
| 2140 |
+
freqs_cis: torch.Tensor,
|
| 2141 |
+
k_cache: torch.Tensor,
|
| 2142 |
+
v_cache: torch.Tensor,
|
| 2143 |
+
cache_locs: torch.Tensor,
|
| 2144 |
+
input_pos: torch.Tensor,
|
| 2145 |
+
out: torch.Tensor,
|
| 2146 |
+
):
|
| 2147 |
+
b, (n_heads, d_head) = q.shape[0], q.shape[-2:]
|
| 2148 |
+
max_seq_len, n_kv_heads = k_cache.shape[1:3]
|
| 2149 |
+
device = q.device
|
| 2150 |
+
|
| 2151 |
+
SEQ_BLOCK_SIZE = 64
|
| 2152 |
+
num_blocks = (max_seq_len + SEQ_BLOCK_SIZE - 1) // SEQ_BLOCK_SIZE
|
| 2153 |
+
stage1_output_values = torch.empty(
|
| 2154 |
+
b, n_heads, num_blocks, d_head, device=device, dtype=torch.float32
|
| 2155 |
+
)
|
| 2156 |
+
stage1_output_logsumexp = torch.empty(
|
| 2157 |
+
b, n_heads, num_blocks, device=device, dtype=torch.float32
|
| 2158 |
+
) - float("inf")
|
| 2159 |
+
q_rope = torch.empty_like(q)
|
| 2160 |
+
HEAD_BLOCK_SIZE = max(16, triton.next_power_of_2(n_heads // n_kv_heads))
|
| 2161 |
+
|
| 2162 |
+
(
|
| 2163 |
+
update_kv_cache_rope_fusion[(b, n_kv_heads, 1)](
|
| 2164 |
+
q,
|
| 2165 |
+
k,
|
| 2166 |
+
v,
|
| 2167 |
+
None,
|
| 2168 |
+
None,
|
| 2169 |
+
q_rope,
|
| 2170 |
+
k_cache,
|
| 2171 |
+
v_cache,
|
| 2172 |
+
input_pos,
|
| 2173 |
+
cache_locs,
|
| 2174 |
+
freqs_cis,
|
| 2175 |
+
max_seq_len,
|
| 2176 |
+
n_heads,
|
| 2177 |
+
n_kv_heads,
|
| 2178 |
+
d_head,
|
| 2179 |
+
1,
|
| 2180 |
+
HEAD_BLOCK_SIZE,
|
| 2181 |
+
GENERATE_ONLY=True,
|
| 2182 |
+
),
|
| 2183 |
+
)
|
| 2184 |
+
|
| 2185 |
+
HEAD_BLOCK_SIZE = max(16, triton.next_power_of_2(n_heads // n_kv_heads))
|
| 2186 |
+
gqa_attention_kv_stage1[
|
| 2187 |
+
(
|
| 2188 |
+
b,
|
| 2189 |
+
n_kv_heads,
|
| 2190 |
+
num_blocks,
|
| 2191 |
+
)
|
| 2192 |
+
](
|
| 2193 |
+
q_rope,
|
| 2194 |
+
k_cache,
|
| 2195 |
+
v_cache,
|
| 2196 |
+
cache_locs,
|
| 2197 |
+
input_pos,
|
| 2198 |
+
stage1_output_values,
|
| 2199 |
+
stage1_output_logsumexp,
|
| 2200 |
+
num_blocks,
|
| 2201 |
+
max_seq_len,
|
| 2202 |
+
n_heads,
|
| 2203 |
+
n_kv_heads,
|
| 2204 |
+
d_head,
|
| 2205 |
+
d_head,
|
| 2206 |
+
SEQ_BLOCK_SIZE,
|
| 2207 |
+
HEAD_BLOCK_SIZE,
|
| 2208 |
+
)
|
| 2209 |
+
attention_kv_stage2[(b, n_heads, 1)](
|
| 2210 |
+
stage1_output_values,
|
| 2211 |
+
stage1_output_logsumexp,
|
| 2212 |
+
out,
|
| 2213 |
+
input_pos,
|
| 2214 |
+
num_blocks,
|
| 2215 |
+
n_heads,
|
| 2216 |
+
d_head,
|
| 2217 |
+
SEQ_BLOCK_SIZE,
|
| 2218 |
+
)
|
| 2219 |
+
|
| 2220 |
+
|
| 2221 |
+
def _flattened_context_mha_rope_fusion(
|
| 2222 |
+
q: torch.Tensor,
|
| 2223 |
+
k: torch.Tensor,
|
| 2224 |
+
v: torch.Tensor,
|
| 2225 |
+
freqs_cis: torch.Tensor,
|
| 2226 |
+
input_pos: torch.Tensor,
|
| 2227 |
+
cache_loc: torch.Tensor,
|
| 2228 |
+
k_cache: torch.Tensor,
|
| 2229 |
+
v_cache: torch.Tensor,
|
| 2230 |
+
seq_len: torch.Tensor,
|
| 2231 |
+
seq_start: torch.Tensor,
|
| 2232 |
+
out: torch.Tensor,
|
| 2233 |
+
) -> None:
|
| 2234 |
+
# NOTE: s_total == sum(seq_len)
|
| 2235 |
+
s_total, n_heads, d_head = q.shape
|
| 2236 |
+
max_cache_seq_len, n_kv_heads = k_cache.shape[1:3]
|
| 2237 |
+
BATCH_SIZE: int = len(input_pos)
|
| 2238 |
+
SEQ_BLOCK = 32
|
| 2239 |
+
q_rope = torch.empty_like(q)
|
| 2240 |
+
HEAD_BLOCK_SIZE = max(16, triton.next_power_of_2(n_heads // n_kv_heads))
|
| 2241 |
+
(
|
| 2242 |
+
update_kv_cache_rope_fusion[
|
| 2243 |
+
(BATCH_SIZE, n_kv_heads, (max(seq_len) + SEQ_BLOCK - 1) // SEQ_BLOCK)
|
| 2244 |
+
](
|
| 2245 |
+
q,
|
| 2246 |
+
k,
|
| 2247 |
+
v,
|
| 2248 |
+
seq_len,
|
| 2249 |
+
seq_start,
|
| 2250 |
+
q_rope,
|
| 2251 |
+
k_cache,
|
| 2252 |
+
v_cache,
|
| 2253 |
+
input_pos,
|
| 2254 |
+
cache_loc,
|
| 2255 |
+
freqs_cis,
|
| 2256 |
+
max_cache_seq_len,
|
| 2257 |
+
n_heads,
|
| 2258 |
+
n_kv_heads,
|
| 2259 |
+
d_head,
|
| 2260 |
+
32,
|
| 2261 |
+
HEAD_BLOCK_SIZE,
|
| 2262 |
+
GENERATE_ONLY=False,
|
| 2263 |
+
),
|
| 2264 |
+
)
|
| 2265 |
+
# TODO: use input_pos to get the correct cache locations
|
| 2266 |
+
softmax_scale = 1.0 / math.sqrt(d_head)
|
| 2267 |
+
grid = (BATCH_SIZE, n_heads, (max(seq_len) + SEQ_BLOCK - 1) // SEQ_BLOCK)
|
| 2268 |
+
context_attention_kv_flattened[grid](
|
| 2269 |
+
q_rope,
|
| 2270 |
+
seq_len,
|
| 2271 |
+
seq_start,
|
| 2272 |
+
k_cache,
|
| 2273 |
+
v_cache,
|
| 2274 |
+
input_pos,
|
| 2275 |
+
cache_loc,
|
| 2276 |
+
out,
|
| 2277 |
+
softmax_scale,
|
| 2278 |
+
n_heads,
|
| 2279 |
+
n_kv_heads,
|
| 2280 |
+
d_head,
|
| 2281 |
+
d_head,
|
| 2282 |
+
SEQ_BLOCK,
|
| 2283 |
+
max_cache_seq_len,
|
| 2284 |
+
num_stages=2,
|
| 2285 |
+
)
|
| 2286 |
+
|
| 2287 |
+
|
| 2288 |
+
@torch.library.custom_op("attention::fused_flattened_mha_with_cache_rope_fusion", mutates_args=())
|
| 2289 |
+
def fused_flattened_mha_with_cache_rope_fusion(
|
| 2290 |
+
q: torch.Tensor,
|
| 2291 |
+
k: torch.Tensor,
|
| 2292 |
+
v: torch.Tensor,
|
| 2293 |
+
input_pos: torch.Tensor,
|
| 2294 |
+
cache_loc: torch.Tensor,
|
| 2295 |
+
seq_len: torch.Tensor,
|
| 2296 |
+
seq_start: torch.Tensor,
|
| 2297 |
+
k_cache: torch.Tensor,
|
| 2298 |
+
v_cache: torch.Tensor,
|
| 2299 |
+
freqs_cis: Optional[torch.Tensor],
|
| 2300 |
+
) -> torch.Tensor:
|
| 2301 |
+
"""Flattened & fused MHA with cache that takes raw input from q, k, v GEMMs.
|
| 2302 |
+
|
| 2303 |
+
Fuse k rope in update_kv_cache and q rope in attention.
|
| 2304 |
+
NOTE: this op can also handle seq_len==0, which might be useful for CUDAGRAPH.
|
| 2305 |
+
"""
|
| 2306 |
+
# this function only handle requests with rope embadding.
|
| 2307 |
+
if freqs_cis is None:
|
| 2308 |
+
return fused_flattened_mha_with_cache(
|
| 2309 |
+
q,
|
| 2310 |
+
k,
|
| 2311 |
+
v,
|
| 2312 |
+
input_pos,
|
| 2313 |
+
cache_loc,
|
| 2314 |
+
seq_len,
|
| 2315 |
+
seq_start,
|
| 2316 |
+
k_cache,
|
| 2317 |
+
v_cache,
|
| 2318 |
+
freqs_cis,
|
| 2319 |
+
)
|
| 2320 |
+
|
| 2321 |
+
# b, s info
|
| 2322 |
+
# NOTE: b, s are just the shapes of the input tensor q; not necessarily the number of sequences.
|
| 2323 |
+
# Generally speaking, we expect one of two cases here:
|
| 2324 |
+
# 1. b > 0, s==1: this indicates a generate-only batch of tokens.
|
| 2325 |
+
# 2. b==1, s > 0: this indicates a mixed context+generate phase. The actual number of sequences
|
| 2326 |
+
# and number of tokens per sequence are encoded in seq_len and seq_start.
|
| 2327 |
+
b, s, d = q.shape
|
| 2328 |
+
head_dim = k_cache.shape[-1]
|
| 2329 |
+
|
| 2330 |
+
# reshapes with num_heads and head_dim
|
| 2331 |
+
if s == 1:
|
| 2332 |
+
bs_view = (b, s)
|
| 2333 |
+
else:
|
| 2334 |
+
bs_view = (b * s,)
|
| 2335 |
+
q = q.view(*bs_view, q.shape[2] // head_dim, head_dim)
|
| 2336 |
+
k = k.view(*bs_view, k.shape[2] // head_dim, head_dim)
|
| 2337 |
+
v = v.view(*bs_view, v.shape[2] // head_dim, head_dim)
|
| 2338 |
+
|
| 2339 |
+
# run attention
|
| 2340 |
+
y = torch.empty_like(q)
|
| 2341 |
+
if s == 1:
|
| 2342 |
+
# generate-only phase
|
| 2343 |
+
_generate_mha_rope_fusion(q, k, v, freqs_cis, k_cache, v_cache, cache_loc, input_pos, y)
|
| 2344 |
+
else:
|
| 2345 |
+
# mixed context + generate phase
|
| 2346 |
+
_flattened_context_mha_rope_fusion(
|
| 2347 |
+
q,
|
| 2348 |
+
k,
|
| 2349 |
+
v,
|
| 2350 |
+
freqs_cis,
|
| 2351 |
+
input_pos,
|
| 2352 |
+
cache_loc,
|
| 2353 |
+
k_cache,
|
| 2354 |
+
v_cache,
|
| 2355 |
+
seq_len,
|
| 2356 |
+
seq_start,
|
| 2357 |
+
y,
|
| 2358 |
+
)
|
| 2359 |
+
|
| 2360 |
+
return y.view(b, s, d) # [b,s,n*h_d]
|
| 2361 |
+
|
| 2362 |
+
|
| 2363 |
+
@fused_flattened_mha_with_cache_rope_fusion.register_fake
|
| 2364 |
+
def fused_flattened_mha_with_cache_rope_fusion_fake(
|
| 2365 |
+
q: torch.Tensor,
|
| 2366 |
+
k: torch.Tensor,
|
| 2367 |
+
v: torch.Tensor,
|
| 2368 |
+
input_pos: torch.Tensor,
|
| 2369 |
+
cache_loc: torch.Tensor,
|
| 2370 |
+
seq_len: torch.Tensor,
|
| 2371 |
+
seq_start: torch.Tensor,
|
| 2372 |
+
k_cache: torch.Tensor,
|
| 2373 |
+
v_cache: torch.Tensor,
|
| 2374 |
+
freqs_cis: torch.Tensor,
|
| 2375 |
+
):
|
| 2376 |
+
return torch.empty_like(q.contiguous())
|
| 2377 |
+
|
| 2378 |
+
|
| 2379 |
+
def _paged_generate_mha(
|
| 2380 |
+
q: torch.Tensor,
|
| 2381 |
+
k: torch.Tensor,
|
| 2382 |
+
v: torch.Tensor,
|
| 2383 |
+
page_table: torch.Tensor,
|
| 2384 |
+
k_cache: torch.Tensor,
|
| 2385 |
+
v_cache: torch.Tensor,
|
| 2386 |
+
cache_loc: torch.Tensor,
|
| 2387 |
+
input_pos: torch.Tensor,
|
| 2388 |
+
out: torch.Tensor,
|
| 2389 |
+
max_seq_len: int,
|
| 2390 |
+
):
|
| 2391 |
+
b, (n_heads, d_head) = q.shape[0], q.shape[-2:]
|
| 2392 |
+
PAGE_SIZE, n_kv_heads = k_cache.shape[1:3]
|
| 2393 |
+
device = q.device
|
| 2394 |
+
|
| 2395 |
+
SEQ_BLOCK_SIZE = PAGE_SIZE # 256
|
| 2396 |
+
num_blocks = (max_seq_len + SEQ_BLOCK_SIZE - 1) // SEQ_BLOCK_SIZE
|
| 2397 |
+
stage1_output_values = torch.empty(
|
| 2398 |
+
b, n_heads, num_blocks, d_head, device=device, dtype=torch.float32
|
| 2399 |
+
)
|
| 2400 |
+
stage1_output_logsumexp = torch.empty(
|
| 2401 |
+
b, n_heads, num_blocks, device=device, dtype=torch.float32
|
| 2402 |
+
) - float("inf")
|
| 2403 |
+
|
| 2404 |
+
(
|
| 2405 |
+
update_paged_kv_cache[(b, n_kv_heads, 1)](
|
| 2406 |
+
k,
|
| 2407 |
+
v,
|
| 2408 |
+
None,
|
| 2409 |
+
None,
|
| 2410 |
+
k_cache,
|
| 2411 |
+
v_cache,
|
| 2412 |
+
cache_loc,
|
| 2413 |
+
input_pos,
|
| 2414 |
+
page_table,
|
| 2415 |
+
n_kv_heads,
|
| 2416 |
+
d_head,
|
| 2417 |
+
SEQ_BLOCK_SIZE,
|
| 2418 |
+
max_seq_len,
|
| 2419 |
+
PAGE_SIZE,
|
| 2420 |
+
page_table.stride(0),
|
| 2421 |
+
GENERATE_ONLY=True,
|
| 2422 |
+
),
|
| 2423 |
+
)
|
| 2424 |
+
|
| 2425 |
+
attention_kv_paged_stage1[
|
| 2426 |
+
(
|
| 2427 |
+
b,
|
| 2428 |
+
n_heads,
|
| 2429 |
+
num_blocks,
|
| 2430 |
+
)
|
| 2431 |
+
](
|
| 2432 |
+
q,
|
| 2433 |
+
k_cache,
|
| 2434 |
+
v_cache,
|
| 2435 |
+
cache_loc,
|
| 2436 |
+
page_table,
|
| 2437 |
+
input_pos,
|
| 2438 |
+
stage1_output_values,
|
| 2439 |
+
stage1_output_logsumexp,
|
| 2440 |
+
num_blocks,
|
| 2441 |
+
max_seq_len,
|
| 2442 |
+
n_heads,
|
| 2443 |
+
n_kv_heads,
|
| 2444 |
+
d_head,
|
| 2445 |
+
SEQ_BLOCK_SIZE,
|
| 2446 |
+
PAGE_SIZE,
|
| 2447 |
+
page_table.stride(0),
|
| 2448 |
+
)
|
| 2449 |
+
attention_kv_stage2[(b, n_heads, 1)](
|
| 2450 |
+
stage1_output_values,
|
| 2451 |
+
stage1_output_logsumexp,
|
| 2452 |
+
out,
|
| 2453 |
+
input_pos,
|
| 2454 |
+
num_blocks,
|
| 2455 |
+
n_heads,
|
| 2456 |
+
d_head,
|
| 2457 |
+
SEQ_BLOCK_SIZE,
|
| 2458 |
+
)
|
| 2459 |
+
|
| 2460 |
+
|
| 2461 |
+
def _paged_context_mha(
|
| 2462 |
+
q: torch.Tensor,
|
| 2463 |
+
k: torch.Tensor,
|
| 2464 |
+
v: torch.Tensor,
|
| 2465 |
+
input_pos: torch.Tensor,
|
| 2466 |
+
cache_loc: torch.Tensor,
|
| 2467 |
+
page_table: torch.Tensor,
|
| 2468 |
+
k_cache: torch.Tensor,
|
| 2469 |
+
v_cache: torch.Tensor,
|
| 2470 |
+
seq_len: torch.Tensor,
|
| 2471 |
+
seq_start: torch.Tensor,
|
| 2472 |
+
out: torch.Tensor,
|
| 2473 |
+
max_seq_len: int, # max cache length of sequence, kv_cache shape don't provide this info.
|
| 2474 |
+
) -> None:
|
| 2475 |
+
# NOTE: s_total == sum(seq_len)
|
| 2476 |
+
s_total, n_heads, d_head = q.shape
|
| 2477 |
+
PAGE_SIZE, n_kv_heads = k_cache.shape[1:3]
|
| 2478 |
+
BATCH_SIZE = len(input_pos)
|
| 2479 |
+
SEQ_BLOCK = PAGE_SIZE # 32
|
| 2480 |
+
(
|
| 2481 |
+
update_paged_kv_cache[
|
| 2482 |
+
(BATCH_SIZE, n_kv_heads, (max(seq_len) + SEQ_BLOCK - 1) // SEQ_BLOCK)
|
| 2483 |
+
](
|
| 2484 |
+
k,
|
| 2485 |
+
v,
|
| 2486 |
+
seq_len,
|
| 2487 |
+
seq_start,
|
| 2488 |
+
k_cache,
|
| 2489 |
+
v_cache,
|
| 2490 |
+
cache_loc,
|
| 2491 |
+
input_pos,
|
| 2492 |
+
page_table,
|
| 2493 |
+
n_kv_heads,
|
| 2494 |
+
d_head,
|
| 2495 |
+
SEQ_BLOCK,
|
| 2496 |
+
max_seq_len,
|
| 2497 |
+
PAGE_SIZE,
|
| 2498 |
+
page_table.stride(0),
|
| 2499 |
+
GENERATE_ONLY=False,
|
| 2500 |
+
),
|
| 2501 |
+
)
|
| 2502 |
+
softmax_scale = 1.0 / math.sqrt(d_head)
|
| 2503 |
+
grid = (BATCH_SIZE, n_heads, (max(seq_len) + SEQ_BLOCK - 1) // SEQ_BLOCK)
|
| 2504 |
+
context_attention_kv_paged[grid](
|
| 2505 |
+
q,
|
| 2506 |
+
seq_len,
|
| 2507 |
+
seq_start,
|
| 2508 |
+
k_cache,
|
| 2509 |
+
v_cache,
|
| 2510 |
+
cache_loc,
|
| 2511 |
+
input_pos,
|
| 2512 |
+
page_table,
|
| 2513 |
+
softmax_scale,
|
| 2514 |
+
out,
|
| 2515 |
+
n_heads,
|
| 2516 |
+
n_kv_heads,
|
| 2517 |
+
d_head,
|
| 2518 |
+
SEQ_BLOCK,
|
| 2519 |
+
max_seq_len,
|
| 2520 |
+
PAGE_SIZE,
|
| 2521 |
+
page_table.stride(0),
|
| 2522 |
+
num_stages=2,
|
| 2523 |
+
)
|
| 2524 |
+
|
| 2525 |
+
|
| 2526 |
+
@torch.library.custom_op("attention::fused_mha_with_paged_cache", mutates_args=())
|
| 2527 |
+
def fused_mha_with_paged_cache(
|
| 2528 |
+
q: torch.Tensor,
|
| 2529 |
+
k: torch.Tensor,
|
| 2530 |
+
v: torch.Tensor,
|
| 2531 |
+
input_pos: torch.Tensor,
|
| 2532 |
+
cache_loc: torch.Tensor,
|
| 2533 |
+
seq_len: torch.Tensor,
|
| 2534 |
+
seq_start: torch.Tensor,
|
| 2535 |
+
page_table: torch.Tensor,
|
| 2536 |
+
max_seq_len: int,
|
| 2537 |
+
k_cache: torch.Tensor,
|
| 2538 |
+
v_cache: torch.Tensor,
|
| 2539 |
+
freqs_cis: Optional[torch.Tensor],
|
| 2540 |
+
) -> torch.Tensor:
|
| 2541 |
+
"""Fused MHA with paged cache that takes raw input from q, k, v GEMMs.
|
| 2542 |
+
|
| 2543 |
+
NOTE: this op can also handle seq_len==0, which might be useful for CUDAGRAPH.
|
| 2544 |
+
"""
|
| 2545 |
+
# b, s info
|
| 2546 |
+
# NOTE: b, s are just the shapes of the input tensor q; not necessarily the number of sequences.
|
| 2547 |
+
# Generally speaking, we expect one of two cases here:
|
| 2548 |
+
# 1. b > 0, s==1: this indicates a generate-only batch of tokens.
|
| 2549 |
+
# 2. b==1, s > 0: this indicates a mixed context+generate phase. The actual number of sequences
|
| 2550 |
+
# and number of tokens per sequence are encoded in seq_len and seq_start.
|
| 2551 |
+
# Assuming that context seq_len always > 0.
|
| 2552 |
+
b, s, d = q.shape
|
| 2553 |
+
head_dim = k_cache.shape[-1]
|
| 2554 |
+
|
| 2555 |
+
# reshapes with num_heads and head_dim
|
| 2556 |
+
if s == 1:
|
| 2557 |
+
bs_view = (b, s)
|
| 2558 |
+
else:
|
| 2559 |
+
bs_view = (b * s,)
|
| 2560 |
+
q = q.view(*bs_view, q.shape[2] // head_dim, head_dim)
|
| 2561 |
+
k = k.view(*bs_view, k.shape[2] // head_dim, head_dim)
|
| 2562 |
+
v = v.view(*bs_view, v.shape[2] // head_dim, head_dim)
|
| 2563 |
+
|
| 2564 |
+
# rope embedding for generate-only or mixed
|
| 2565 |
+
if freqs_cis is not None:
|
| 2566 |
+
if s == 1:
|
| 2567 |
+
rope_args = (freqs_cis, input_pos, "bsnd")
|
| 2568 |
+
fn_rope = torch.ops.rope.apply_rope_with_input_pos
|
| 2569 |
+
else:
|
| 2570 |
+
rope_args = (freqs_cis, input_pos, seq_len, seq_start)
|
| 2571 |
+
fn_rope = torch.ops.rope.apply_rope_on_flattened_inputs
|
| 2572 |
+
q = fn_rope(q, *rope_args)
|
| 2573 |
+
k = fn_rope(k, *rope_args)
|
| 2574 |
+
|
| 2575 |
+
# run attention
|
| 2576 |
+
y = torch.empty_like(q)
|
| 2577 |
+
if s == 1:
|
| 2578 |
+
# generate-only phase
|
| 2579 |
+
_paged_generate_mha(
|
| 2580 |
+
q, k, v, page_table, k_cache, v_cache, cache_loc, input_pos, y, max_seq_len
|
| 2581 |
+
)
|
| 2582 |
+
else:
|
| 2583 |
+
# mixed context + generate phase
|
| 2584 |
+
_paged_context_mha(
|
| 2585 |
+
q,
|
| 2586 |
+
k,
|
| 2587 |
+
v,
|
| 2588 |
+
input_pos,
|
| 2589 |
+
cache_loc,
|
| 2590 |
+
page_table,
|
| 2591 |
+
k_cache,
|
| 2592 |
+
v_cache,
|
| 2593 |
+
seq_len,
|
| 2594 |
+
seq_start,
|
| 2595 |
+
y,
|
| 2596 |
+
max_seq_len,
|
| 2597 |
+
)
|
| 2598 |
+
|
| 2599 |
+
return y.view(b, s, d) # [b,s,n*h_d]
|
| 2600 |
+
|
| 2601 |
+
|
| 2602 |
+
@fused_mha_with_paged_cache.register_fake
|
| 2603 |
+
def fused_mha_with_paged_cache_fake(
|
| 2604 |
+
q: torch.Tensor,
|
| 2605 |
+
k: torch.Tensor,
|
| 2606 |
+
v: torch.Tensor,
|
| 2607 |
+
input_pos: torch.Tensor,
|
| 2608 |
+
cache_loc: torch.Tensor,
|
| 2609 |
+
seq_len: torch.Tensor,
|
| 2610 |
+
seq_start: torch.Tensor,
|
| 2611 |
+
page_table: torch.Tensor,
|
| 2612 |
+
max_seq_len: int,
|
| 2613 |
+
k_cache: torch.Tensor,
|
| 2614 |
+
v_cache: torch.Tensor,
|
| 2615 |
+
freqs_cis: Optional[torch.Tensor],
|
| 2616 |
+
) -> torch.Tensor:
|
| 2617 |
+
return torch.empty_like(q.contiguous())
|
| 2618 |
+
|
| 2619 |
+
|
| 2620 |
+
@torch.library.custom_op("attention::prepare_fused_mha_metadata", mutates_args=())
|
| 2621 |
+
def prepare_fused_mha_metadata(
|
| 2622 |
+
input_ids: torch.Tensor,
|
| 2623 |
+
seq_len: torch.Tensor,
|
| 2624 |
+
input_pos: torch.Tensor,
|
| 2625 |
+
cache_loc: torch.Tensor,
|
| 2626 |
+
pages_per_seq: torch.Tensor,
|
| 2627 |
+
page_size: int,
|
| 2628 |
+
) -> List[torch.Tensor]:
|
| 2629 |
+
num_seq = SequenceInfo._get_sanitized_num_sequences(input_ids, seq_len)
|
| 2630 |
+
seq_start = torch.zeros_like(seq_len[:num_seq])
|
| 2631 |
+
seq_start[1:] = torch.cumsum(seq_len[: num_seq - 1], 0)
|
| 2632 |
+
return (
|
| 2633 |
+
seq_len[:num_seq].clone(),
|
| 2634 |
+
input_pos[:num_seq].clone(),
|
| 2635 |
+
cache_loc[:num_seq].clone(),
|
| 2636 |
+
seq_start,
|
| 2637 |
+
)
|
| 2638 |
+
|
| 2639 |
+
|
| 2640 |
+
@prepare_fused_mha_metadata.register_fake
|
| 2641 |
+
def prepare_fused_mha_metadata_fake(
|
| 2642 |
+
input_ids, seq_len, input_pos, cache_loc, pages_per_seq, page_size
|
| 2643 |
+
):
|
| 2644 |
+
return (
|
| 2645 |
+
torch.empty_like(seq_len),
|
| 2646 |
+
torch.empty_like(input_pos),
|
| 2647 |
+
torch.empty_like(cache_loc),
|
| 2648 |
+
torch.empty_like(seq_len),
|
| 2649 |
+
)
|
| 2650 |
+
|
| 2651 |
+
|
| 2652 |
+
@AttentionRegistry.register("TritonWithFlattenedInputs")
|
| 2653 |
+
class TritonWithFlattenedInputs(AttentionDescriptor):
|
| 2654 |
+
@classmethod
|
| 2655 |
+
def is_paged(cls):
|
| 2656 |
+
"""Return if the attention op is paged or not."""
|
| 2657 |
+
return False
|
| 2658 |
+
|
| 2659 |
+
@classmethod
|
| 2660 |
+
def get_attention_op(cls):
|
| 2661 |
+
return torch.ops.attention.fused_flattened_mha_with_cache, 3
|
| 2662 |
+
|
| 2663 |
+
@classmethod
|
| 2664 |
+
def get_prepare_metadata_op(cls):
|
| 2665 |
+
return torch.ops.attention.prepare_fused_mha_metadata, 4
|
| 2666 |
+
|
| 2667 |
+
@classmethod
|
| 2668 |
+
def get_cache_initializers(cls, get_info):
|
| 2669 |
+
def _get_cache(si: SequenceInfo):
|
| 2670 |
+
assert not si.is_paged, "Paged cache not supported for TritonWithFlattenedInputs"
|
| 2671 |
+
attention_info = get_info()
|
| 2672 |
+
return torch.empty(
|
| 2673 |
+
si.num_pages,
|
| 2674 |
+
si.page_size,
|
| 2675 |
+
attention_info.num_kv_heads,
|
| 2676 |
+
attention_info.head_dim,
|
| 2677 |
+
device=si.device,
|
| 2678 |
+
dtype=attention_info.cache_config.dtype or attention_info.dtype,
|
| 2679 |
+
)
|
| 2680 |
+
|
| 2681 |
+
return {"k_cache": _get_cache, "v_cache": _get_cache}
|
| 2682 |
+
|
| 2683 |
+
@classmethod
|
| 2684 |
+
def get_global_buffer_initializers(cls, get_info):
|
| 2685 |
+
attention_info = get_info()
|
| 2686 |
+
head_dim = attention_info.head_dim
|
| 2687 |
+
pos_embd_config = attention_info.pos_embd_config
|
| 2688 |
+
|
| 2689 |
+
def _get_freqs_cis(si: SequenceInfo):
|
| 2690 |
+
if pos_embd_config.mode is None:
|
| 2691 |
+
return torch.empty(0, device=si.device)
|
| 2692 |
+
assert pos_embd_config.mode == "rope", f"Mode {pos_embd_config.mode=} not supported"
|
| 2693 |
+
assert pos_embd_config.rope_scale == 1.0, f"{pos_embd_config.rope_scale=} not supported"
|
| 2694 |
+
rope_theta = pos_embd_config.rope_theta
|
| 2695 |
+
return cls._precompute_freqs_cis(2 * si.max_seq_len, head_dim, rope_theta).to(si.device)
|
| 2696 |
+
|
| 2697 |
+
k_full = "_".join(map(str, ["freqs_cis", *astuple(pos_embd_config)])).replace(".", "_")
|
| 2698 |
+
return {k_full: _get_freqs_cis}
|
| 2699 |
+
|
| 2700 |
+
@staticmethod
|
| 2701 |
+
def _precompute_freqs_cis(
|
| 2702 |
+
seq_len: int, head_dim: int, rope_theta: Optional[float] = None
|
| 2703 |
+
) -> torch.Tensor:
|
| 2704 |
+
if rope_theta is None:
|
| 2705 |
+
rope_theta = 1e4
|
| 2706 |
+
freqs = 1.0 / (
|
| 2707 |
+
rope_theta ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim)
|
| 2708 |
+
)
|
| 2709 |
+
t = torch.arange(seq_len)
|
| 2710 |
+
freqs = torch.outer(t, freqs)
|
| 2711 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
| 2712 |
+
# cos and sin (real and img) are packed
|
| 2713 |
+
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
| 2714 |
+
return cache.to(dtype=torch.float16)
|