stoshniwal
commited on
Commit
•
f37fb64
1
Parent(s):
80d4ac1
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,72 @@
|
|
1 |
-
---
|
2 |
-
license: llama3.1
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.1
|
3 |
+
base_model:
|
4 |
+
- meta-llama/Llama-3.1-8B
|
5 |
+
datasets:
|
6 |
+
- nvidia/OpenMathInstruct-2
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
tags:
|
10 |
+
- nvidia
|
11 |
+
- math
|
12 |
+
---
|
13 |
+
|
14 |
+
# OpenMath2-Llama3.1-8B
|
15 |
+
|
16 |
+
OpenMath2-Llama3.1-8B is obtained by finetuning [Llama3.1-8B-Base](https://huggingface.co/meta-llama/Llama-3.1-8B) with [OpenMathInstruct-2](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2).
|
17 |
+
|
18 |
+
The model outperforms [Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on [MATH](https://github.com/hendrycks/math) by 3.9%.
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
| Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH |
|
23 |
+
|:---|:---:|:---:|:---:|:---:|:---:|
|
24 |
+
| Llama3.1-8B-Instruct | 84.5 | 51.9 | 9/40 | 2/30 | 12.7 |
|
25 |
+
| **OpenMath2-Llama3.1-8B** ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B)) | 91.7 | 67.8 | 16/40 | 3/30 | 22.0 |
|
26 |
+
| + majority@256 | 94.1 | 76.1 | 23/40 | 3/30 | 24.6 |
|
27 |
+
| Llama3.1-70B-Instruct | 95.8 | 67.9 | 19/40 | 6/30 | 19.0 |
|
28 |
+
| OpenMath2-Llama3.1-70B ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B)) | 94.9 | 71.9 | 20/40 | 4/30 | 23.1 |
|
29 |
+
| + majority@256 | 96.0 | 79.6 | 24/40 | 6/30 | 27.6 |
|
30 |
+
|
31 |
+
The pipeline we used to produce the data and models is fully open-sourced!
|
32 |
+
|
33 |
+
- [Code](https://github.com/Kipok/NeMo-Skills)
|
34 |
+
- [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b)
|
35 |
+
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2)
|
36 |
+
|
37 |
+
|
38 |
+
# How to use the models?
|
39 |
+
|
40 |
+
Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
|
41 |
+
|
42 |
+
# Reproducing our results
|
43 |
+
|
44 |
+
We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
|
45 |
+
|
46 |
+
# Improving other models
|
47 |
+
|
48 |
+
To improve other models or to learn more about our code, read through the docs below.
|
49 |
+
|
50 |
+
- [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
|
51 |
+
- [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
|
52 |
+
- [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
|
53 |
+
- [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
|
54 |
+
|
55 |
+
In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
|
56 |
+
an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
|
57 |
+
It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
|
58 |
+
offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
|
59 |
+
|
60 |
+
|
61 |
+
## Citation
|
62 |
+
|
63 |
+
If you find our work useful, please consider citing us!
|
64 |
+
|
65 |
+
```bibtex
|
66 |
+
@article{toshniwal2024openmath2,
|
67 |
+
title = {OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data},
|
68 |
+
author = {Shubham Toshniwal and Wei Du and Ivan Moshkov and Branislav Kisacanin and Alexan Ayrapetyan and Igor Gitman},
|
69 |
+
year = {2024},
|
70 |
+
journal = {arXiv preprint arXiv:2410.01560}
|
71 |
+
}
|
72 |
+
```
|