stoshniwal commited on
Commit
f37fb64
1 Parent(s): 80d4ac1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -3
README.md CHANGED
@@ -1,3 +1,72 @@
1
- ---
2
- license: llama3.1
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.1
3
+ base_model:
4
+ - meta-llama/Llama-3.1-8B
5
+ datasets:
6
+ - nvidia/OpenMathInstruct-2
7
+ language:
8
+ - en
9
+ tags:
10
+ - nvidia
11
+ - math
12
+ ---
13
+
14
+ # OpenMath2-Llama3.1-8B
15
+
16
+ OpenMath2-Llama3.1-8B is obtained by finetuning [Llama3.1-8B-Base](https://huggingface.co/meta-llama/Llama-3.1-8B) with [OpenMathInstruct-2](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2).
17
+
18
+ The model outperforms [Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on [MATH](https://github.com/hendrycks/math) by 3.9%.
19
+
20
+
21
+
22
+ | Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH |
23
+ |:---|:---:|:---:|:---:|:---:|:---:|
24
+ | Llama3.1-8B-Instruct | 84.5 | 51.9 | 9/40 | 2/30 | 12.7 |
25
+ | **OpenMath2-Llama3.1-8B** ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B)) | 91.7 | 67.8 | 16/40 | 3/30 | 22.0 |
26
+ | + majority@256 | 94.1 | 76.1 | 23/40 | 3/30 | 24.6 |
27
+ | Llama3.1-70B-Instruct | 95.8 | 67.9 | 19/40 | 6/30 | 19.0 |
28
+ | OpenMath2-Llama3.1-70B ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B)) | 94.9 | 71.9 | 20/40 | 4/30 | 23.1 |
29
+ | + majority@256 | 96.0 | 79.6 | 24/40 | 6/30 | 27.6 |
30
+
31
+ The pipeline we used to produce the data and models is fully open-sourced!
32
+
33
+ - [Code](https://github.com/Kipok/NeMo-Skills)
34
+ - [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b)
35
+ - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2)
36
+
37
+
38
+ # How to use the models?
39
+
40
+ Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
41
+
42
+ # Reproducing our results
43
+
44
+ We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
45
+
46
+ # Improving other models
47
+
48
+ To improve other models or to learn more about our code, read through the docs below.
49
+
50
+ - [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
51
+ - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
52
+ - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
53
+ - [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
54
+
55
+ In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
56
+ an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
57
+ It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
58
+ offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
59
+
60
+
61
+ ## Citation
62
+
63
+ If you find our work useful, please consider citing us!
64
+
65
+ ```bibtex
66
+ @article{toshniwal2024openmath2,
67
+ title = {OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data},
68
+ author = {Shubham Toshniwal and Wei Du and Ivan Moshkov and Branislav Kisacanin and Alexan Ayrapetyan and Igor Gitman},
69
+ year = {2024},
70
+ journal = {arXiv preprint arXiv:2410.01560}
71
+ }
72
+ ```