File size: 4,826 Bytes
d3b8c8f db40549 28c5370 db40549 d3b8c8f 28c5370 d3b8c8f db40549 d3b8c8f db40549 d3b8c8f db40549 d3b8c8f db40549 d3b8c8f db40549 988c610 36fee04 988c610 db40549 c1fddb0 db40549 31f7840 d3b8c8f 988c610 db40549 d3b8c8f 988c610 d3b8c8f 988c610 db40549 988c610 db40549 d3b8c8f 28c5370 988c610 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import namedtuple
from typing import Callable, Optional, List, Union
from timm.models import VisionTransformer
import torch
from transformers import PretrainedConfig, PreTrainedModel
from .common import RESOURCE_MAP, DEFAULT_VERSION
# Force import of eradio_model in order to register it.
from .eradio_model import eradio
from .radio_model import create_model_from_args
from .radio_model import RADIOModel as RADIOModelBase, Resolution
from .input_conditioner import get_default_conditioner, InputConditioner
# Register extra models
from .extra_timm_models import *
class RADIOConfig(PretrainedConfig):
"""Pretrained Hugging Face configuration for RADIO models."""
def __init__(
self,
args: Optional[dict] = None,
version: Optional[str] = DEFAULT_VERSION,
patch_size: Optional[int] = None,
max_resolution: Optional[int] = None,
preferred_resolution: Optional[Resolution] = None,
adaptor_names: Union[str, List[str]] = None,
vitdet_window_size: Optional[int] = None,
**kwargs,
):
self.args = args
for field in ["dtype", "amp_dtype"]:
if self.args is not None and field in self.args:
# Convert to a string in order to make it serializable.
# For example for torch.float32 we will store "float32",
# for "bfloat16" we will store "bfloat16".
self.args[field] = str(args[field]).split(".")[-1]
self.version = version
resource = RESOURCE_MAP[version]
self.patch_size = patch_size or resource.patch_size
self.max_resolution = max_resolution or resource.max_resolution
self.preferred_resolution = (
preferred_resolution or resource.preferred_resolution
)
self.adaptor_names = adaptor_names
self.vitdet_window_size = vitdet_window_size
super().__init__(**kwargs)
class RADIOModel(PreTrainedModel):
"""Pretrained Hugging Face model for RADIO.
This class inherits from PreTrainedModel, which provides
HuggingFace's functionality for loading and saving models.
"""
config_class = RADIOConfig
def __init__(self, config):
super().__init__(config)
RADIOArgs = namedtuple("RADIOArgs", config.args.keys())
args = RADIOArgs(**config.args)
self.config = config
model = create_model_from_args(args)
input_conditioner: InputConditioner = get_default_conditioner()
dtype = getattr(args, "dtype", torch.float32)
if isinstance(dtype, str):
# Convert the dtype's string representation back to a dtype.
dtype = getattr(torch, dtype)
model.to(dtype=dtype)
input_conditioner.dtype = dtype
summary_idxs = torch.tensor(
[i for i, t in enumerate(args.teachers) if t.get("use_summary", True)],
dtype=torch.int64,
)
adaptor_names = config.adaptor_names
if adaptor_names is not None:
raise NotImplementedError(
f"Adaptors are not yet supported in Hugging Face models. Adaptor names: {adaptor_names}"
)
adaptors = dict()
self.radio_model = RADIOModelBase(
model,
input_conditioner,
summary_idxs=summary_idxs,
patch_size=config.patch_size,
max_resolution=config.max_resolution,
window_size=config.vitdet_window_size,
preferred_resolution=config.preferred_resolution,
adaptors=adaptors,
)
@property
def model(self) -> VisionTransformer:
return self.radio_model.model
@property
def input_conditioner(self) -> InputConditioner:
return self.radio_model.input_conditioner
@input_conditioner.setter
def input_conditioner(self, v: InputConditioner):
self.radio_model.input_conditioner = v
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
ret = self.input_conditioner
self.input_conditioner = nn.Identity()
return ret
def forward(self, x: torch.Tensor):
return self.radio_model.forward(x)
|