File size: 2,272 Bytes
31f7840
 
 
 
 
 
 
 
db40549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

from typing import Union, Tuple
from types import MethodType

import torch
from torch import nn

from timm.models import VisionTransformer, checkpoint_seq

from .vit_patch_generator import ViTPatchGenerator


def _forward_cpe(self: VisionTransformer, x: torch.Tensor) -> torch.Tensor:
    x = self.patch_generator(x)
    if self.grad_checkpointing and not torch.jit.is_scripting():
        x = checkpoint_seq(self.blocks, x)
    else:
        x = self.blocks(x)
    x = self.norm(x)
    return x


def enable_cpe(model: nn.Module,
               max_img_size: Union[int, Tuple[int, int]] = 1024,
               num_cls_tokens: int = 1,
               pos_dropout: float = 0.1,
               register_multiple: int = 0,
):
    if not isinstance(model, VisionTransformer):
        raise ValueError("CPE only support for VisionTransformer models!")

    patch_size = model.patch_embed.patch_size[0]
    embed_dim = model.embed_dim
    input_dims = model.patch_embed.img_size
    normalize_patches = not isinstance(model.patch_embed.norm, nn.Identity)
    cls_token = model.cls_token is not None

    max_img_size = int(round(max_img_size / patch_size) * patch_size)

    patch_generator = ViTPatchGenerator(
        patch_size=patch_size,
        embed_dim=embed_dim,
        input_dims=input_dims,
        normalize_patches=normalize_patches,
        cls_token=cls_token,
        max_input_dims=max_img_size,
        pos_dropout=pos_dropout,
        num_cls_tokens=num_cls_tokens,
        register_multiple=register_multiple,
    )

    model.patch_generator = patch_generator
    model.patch_embed = None
    model.cls_token = None
    model.pos_embed = None
    model.pos_drop = None
    model.num_cls_tokens = num_cls_tokens
    model.num_registers = patch_generator.num_registers

    model.forward_features = MethodType(_forward_cpe, model)