|
|
|
|
|
|
|
import glob |
|
import os |
|
import matplotlib |
|
import torch |
|
from torch.nn.utils import weight_norm |
|
matplotlib.use("Agg") |
|
import matplotlib.pylab as plt |
|
from meldataset import MAX_WAV_VALUE |
|
from scipy.io.wavfile import write |
|
|
|
|
|
def plot_spectrogram(spectrogram): |
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", |
|
interpolation='none') |
|
plt.colorbar(im, ax=ax) |
|
|
|
fig.canvas.draw() |
|
plt.close() |
|
|
|
return fig |
|
|
|
|
|
def plot_spectrogram_clipped(spectrogram, clip_max=2.): |
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", |
|
interpolation='none', vmin=1e-6, vmax=clip_max) |
|
plt.colorbar(im, ax=ax) |
|
|
|
fig.canvas.draw() |
|
plt.close() |
|
|
|
return fig |
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
m.weight.data.normal_(mean, std) |
|
|
|
|
|
def apply_weight_norm(m): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
weight_norm(m) |
|
|
|
|
|
def get_padding(kernel_size, dilation=1): |
|
return int((kernel_size*dilation - dilation)/2) |
|
|
|
|
|
def load_checkpoint(filepath, device): |
|
assert os.path.isfile(filepath) |
|
print("Loading '{}'".format(filepath)) |
|
checkpoint_dict = torch.load(filepath, map_location=device) |
|
print("Complete.") |
|
return checkpoint_dict |
|
|
|
|
|
def save_checkpoint(filepath, obj): |
|
print("Saving checkpoint to {}".format(filepath)) |
|
torch.save(obj, filepath) |
|
print("Complete.") |
|
|
|
|
|
def scan_checkpoint(cp_dir, prefix): |
|
pattern = os.path.join(cp_dir, prefix + '????????') |
|
cp_list = glob.glob(pattern) |
|
if len(cp_list) == 0: |
|
return None |
|
return sorted(cp_list)[-1] |
|
|
|
def save_audio(audio, path, sr): |
|
|
|
audio = audio * MAX_WAV_VALUE |
|
audio = audio.cpu().numpy().astype('int16') |
|
write(path, sr, audio) |