krishnacpuvvada
commited on
Commit
•
b010a2d
1
Parent(s):
5113160
Update README.md
Browse filesupdating transcribe fn signature in examples.
README.md
CHANGED
@@ -284,7 +284,7 @@ The Canay-1B model has 24 encoder layers and 24 layers of decoder layers in tota
|
|
284 |
|
285 |
## NVIDIA NeMo
|
286 |
|
287 |
-
To train, fine-tune or
|
288 |
```
|
289 |
pip install git+https://github.com/NVIDIA/NeMo.git@r1.23.0#egg=nemo_toolkit[asr]
|
290 |
```
|
@@ -309,24 +309,18 @@ canary_model.change_decoding_strategy(decode_cfg)
|
|
309 |
```
|
310 |
|
311 |
### Input Format
|
312 |
-
|
313 |
|
|
|
314 |
```python
|
315 |
predicted_text = canary_model.transcribe(
|
316 |
-
|
317 |
batch_size=16, # batch size to run the inference with
|
318 |
)
|
319 |
```
|
320 |
|
321 |
-
or
|
322 |
|
323 |
-
```bash
|
324 |
-
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
325 |
-
pretrained_name="nvidia/canary-1b"
|
326 |
-
audio_dir="<path to audio directory>"
|
327 |
-
```
|
328 |
-
|
329 |
-
Another recommended option is to use a json manifest as input, where each line in the file is a dictionary containing the following fields:
|
330 |
```yaml
|
331 |
# Example of a line in input_manifest.json
|
332 |
{
|
@@ -348,13 +342,6 @@ predicted_text = canary_model.transcribe(
|
|
348 |
)
|
349 |
```
|
350 |
|
351 |
-
or use:
|
352 |
-
|
353 |
-
```bash
|
354 |
-
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
355 |
-
pretrained_name="nvidia/canary-1b"
|
356 |
-
dataset_manifest="<path to manifest file>"
|
357 |
-
```
|
358 |
|
359 |
### Automatic Speech-to-text Recognition (ASR)
|
360 |
|
@@ -391,6 +378,21 @@ An example manifest for transcribing English audios into German text can be:
|
|
391 |
}
|
392 |
```
|
393 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
### Input
|
396 |
|
|
|
284 |
|
285 |
## NVIDIA NeMo
|
286 |
|
287 |
+
To train, fine-tune or Transcribe with Canary, you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed Cython and latest PyTorch version.
|
288 |
```
|
289 |
pip install git+https://github.com/NVIDIA/NeMo.git@r1.23.0#egg=nemo_toolkit[asr]
|
290 |
```
|
|
|
309 |
```
|
310 |
|
311 |
### Input Format
|
312 |
+
Input to Canary can be either a list of paths to audio files or a jsonl manifest file.
|
313 |
|
314 |
+
If the input is a list of paths, Canary assumes that the audio is English and Transcribes it. I.e., Canary default behaviour is English ASR.
|
315 |
```python
|
316 |
predicted_text = canary_model.transcribe(
|
317 |
+
paths2audio_files=['path1.wav', 'path2.wav'],
|
318 |
batch_size=16, # batch size to run the inference with
|
319 |
)
|
320 |
```
|
321 |
|
322 |
+
To use Canary for transcribing other supported languages or perform Speech-to-Text translation, specify the input as jsonl manifest file, where each line in the file is a dictionary containing the following fields:
|
323 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
```yaml
|
325 |
# Example of a line in input_manifest.json
|
326 |
{
|
|
|
342 |
)
|
343 |
```
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
### Automatic Speech-to-text Recognition (ASR)
|
347 |
|
|
|
378 |
}
|
379 |
```
|
380 |
|
381 |
+
Alternatively, one can use `transcribe_speech.py` script to do the same.
|
382 |
+
|
383 |
+
```bash
|
384 |
+
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
385 |
+
pretrained_name="nvidia/canary-1b"
|
386 |
+
audio_dir="<path to audio_directory>" # transcribes all the wav files in audio_directory
|
387 |
+
```
|
388 |
+
|
389 |
+
|
390 |
+
```bash
|
391 |
+
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
392 |
+
pretrained_name="nvidia/canary-1b"
|
393 |
+
dataset_manifest="<path to manifest file>"
|
394 |
+
```
|
395 |
+
|
396 |
|
397 |
### Input
|
398 |
|