erastorgueva-nv commited on
Commit
02cb56b
1 Parent(s): e7d4183

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +274 -0
README.md CHANGED
@@ -1,3 +1,277 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - es
4
+ library_name: nemo
5
+ datasets:
6
+ - Fisher-(Spanish)
7
+ - VoxPopuli-(Spanish)
8
+ - facebook/multilingual_librispeech
9
+ - mozilla-foundation/common_voice_12_0
10
+ thumbnail: null
11
+ tags:
12
+ - automatic-speech-recognition
13
+ - speech
14
+ - audio
15
+ - Transducer
16
+ - FastConformer
17
+ - CTC
18
+ - Transformer
19
+ - pytorch
20
+ - NeMo
21
+ - hf-asr-leaderboard
22
  license: cc-by-4.0
23
+ model-index:
24
+ - name: stt_es_fastconformer_hybrid_large_pc
25
+ results:
26
+
27
+ - task:
28
+ name: Automatic Speech Recognition
29
+ type: automatic-speech-recognition
30
+ dataset:
31
+ name: Fisher
32
+ type: Spanish
33
+ config: es
34
+ split: test
35
+ args:
36
+ language: es
37
+ metrics:
38
+ - name: Test WER
39
+ type: wer
40
+ value: 14.65
41
+ - task:
42
+ name: Automatic Speech Recognition
43
+ type: automatic-speech-recognition
44
+ dataset:
45
+ name: common-voice-12-0
46
+ type: mozilla-foundation/common_voice_12_0
47
+ config: es
48
+ split: test
49
+ args:
50
+ language: es
51
+ metrics:
52
+ - name: Test WER
53
+ type: wer
54
+ value: 5.00
55
+ - task:
56
+ type: Automatic Speech Recognition
57
+ name: automatic-speech-recognition
58
+ dataset:
59
+ name: Multilingual LibriSpeech
60
+ type: facebook/multilingual_librispeech
61
+ config: spanish
62
+ split: test
63
+ args:
64
+ language: es
65
+ metrics:
66
+ - name: Test WER
67
+ type: wer
68
+ value: 3.90
69
+ - task:
70
+ type: Automatic Speech Recognition
71
+ name: automatic-speech-recognition
72
+ dataset:
73
+ name: Vox Populi
74
+ type: polinaeterna/voxpopuli
75
+ config: spanish
76
+ split: test
77
+ args:
78
+ language: es
79
+ metrics:
80
+ - name: Test WER
81
+ type: wer
82
+ value: 5.59
83
+ - task:
84
+ name: Automatic Speech Recognition
85
+ type: automatic-speech-recognition
86
+ dataset:
87
+ name: Fisher
88
+ type: Spanish
89
+ config: spanish P&C
90
+ split: test
91
+ args:
92
+ language: es
93
+ metrics:
94
+ - name: Test WER P&C
95
+ type: wer
96
+ value: 28.91
97
+ - task:
98
+ name: Automatic Speech Recognition
99
+ type: automatic-speech-recognition
100
+ dataset:
101
+ name: common-voice-12-0
102
+ type: mozilla-foundation/common_voice_12_0
103
+ config: Spanish P&C
104
+ split: test
105
+ args:
106
+ language: es
107
+ metrics:
108
+ - name: Test WER
109
+ type: wer
110
+ value: 7.51
111
+ - task:
112
+ type: Automatic Speech Recognition
113
+ name: automatic-speech-recognition
114
+ dataset:
115
+ name: Multilingual LibriSpeech
116
+ type: facebook/multilingual_librispeech
117
+ config: Spanish P&C
118
+ split: test
119
+ args:
120
+ language: es
121
+ metrics:
122
+ - name: Test WER
123
+ type: wer
124
+ value: 11.84
125
+ - task:
126
+ type: Automatic Speech Recognition
127
+ name: automatic-speech-recognition
128
+ dataset:
129
+ name: Vox Populi
130
+ type: polinaeterna/voxpopuli
131
+ config: Spanish P&C
132
+ split: test
133
+ args:
134
+ language: es
135
+ metrics:
136
+ - name: Test WER
137
+ type: wer
138
+ value: 9.79
139
+
140
  ---
141
+
142
+ # NVIDIA FastConformer-Hybrid Large (es)
143
+
144
+ <style>
145
+ img {
146
+ display: inline;
147
+ }
148
+ </style>
149
+
150
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--Transducer_CTC-lightgrey#model-badge)](#model-architecture)
151
+ | [![Model size](https://img.shields.io/badge/Params-115M-lightgrey#model-badge)](#model-architecture)
152
+ | [![Language](https://img.shields.io/badge/Language-es-lightgrey#model-badge)](#datasets)
153
+
154
+
155
+ This model transcribes speech in upper and lower case Spanish alphabet along with spaces, periods, commas, and question marks (inverted and non-inverted).
156
+ It is a "large" version of FastConformer Transducer-CTC (around 115M parameters) model. This is a hybrid model trained on two losses: Transducer (default) and CTC.
157
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details.
158
+
159
+ ## NVIDIA NeMo: Training
160
+
161
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
162
+ ```
163
+ pip install nemo_toolkit['all']
164
+ ```
165
+
166
+ ## How to Use this Model
167
+
168
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
169
+
170
+ ### Automatically instantiate the model
171
+
172
+ ```python
173
+ import nemo.collections.asr as nemo_asr
174
+ asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(model_name="nvidia/stt_es_fastconformer_hybrid_large_pc")
175
+ ```
176
+
177
+ ### Transcribing using Python
178
+ First, let's get a sample
179
+ ```
180
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
181
+ ```
182
+ Then simply do:
183
+ ```
184
+ asr_model.transcribe(['2086-149220-0033.wav'])
185
+ ```
186
+
187
+ ### Transcribing many audio files
188
+
189
+ Using Transducer mode inference:
190
+ ```shell
191
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
192
+ pretrained_name="nvidia/stt_es_fastconformer_hybrid_large_pc"
193
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
194
+ ```
195
+
196
+ Using CTC mode inference:
197
+ ```shell
198
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
199
+ pretrained_name="nvidia/stt_es_fastconformer_hybrid_large_pc"
200
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
201
+ decoder_type="ctc"
202
+ ```
203
+
204
+ ### Input
205
+
206
+ This model accepts 16000 Hz Mono-channel Audio (wav files) as input.
207
+
208
+ ### Output
209
+
210
+ This model provides transcribed speech as a string for a given audio sample.
211
+
212
+ ## Model Architecture
213
+
214
+ FastConformer is an optimized version of the Conformer model [1] with 8x depthwise-separable convolutional downsampling. The model is trained in a multitask setup with joint Transducer and CTC decoder loss. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) and about Hybrid Transducer-CTC training here: [Hybrid Transducer-CTC](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#hybrid-transducer-ctc).
215
+
216
+ ## Training
217
+
218
+ The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_hybrid_transducer_ctc/speech_to_text_hybrid_rnnt_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/hybrid_transducer_ctc/fastconformer_hybrid_transducer_ctc_bpe.yaml).
219
+
220
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
221
+
222
+ ### Datasets
223
+
224
+ The model in this collection are trained on a composite dataset (NeMo PnC ES ASRSET) comprising of 1424 thousand hours of Spanish speech:
225
+
226
+ - Fisher (141 hrs)
227
+ - MCV12 (395 hrs)
228
+ - MLS (780 hrs)
229
+ - Voxpopuli (108 hrs)
230
+
231
+ ## Performance
232
+
233
+ The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general.
234
+
235
+ The following tables summarizes the performance of the available models in this collection with the Transducer decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
236
+
237
+
238
+ a) On data without Punctuation and Capitalization with Transducer decoder
239
+
240
+
241
+ | Version | Tokenizer | Vocabulary Size | Fisher dev | Fisher test | MCV12 dev | MCV12 test | MLS dev | MLS test | Voxpopuli dev | Voxpopuli test |
242
+ |---------|----------------------|-----------------|------------|-------------|-----------|------------|---------|----------|---------------|----------------|
243
+ | 1.18.0 | SentencePiece Unigram | 1024 | 15.14% | 15.01% | 4.43% | 4.99% | 3.06% | 3.76% | 4.62% | 5.72% |
244
+
245
+
246
+
247
+ b) On data with Punctuation and Capitalization with Transducer decoder
248
+
249
+ | Version | Tokenizer | Vocabulary Size | Fisher dev | Fisher test | MCV12 dev | MCV12 test | MLS dev | MLS test | Voxpopuli dev | Voxpopuli test |
250
+ |---------|----------------------| ----------------|------------|-------------|-----------|------------|---------|----------|---------------|----------------|
251
+ | 1.18.0 | SentencePiece Unigram | 1024 | 29.44% | 28.91% | 7.13% | 7.51% | 10.58% | 11.84% | 8.58% | 9.79% |
252
+
253
+ ## Limitations
254
+ Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. The model only outputs the punctuations: ```'.', ',', '¿', '?' ``` and hence might not do well in scenarios where other punctuations are also expected.
255
+
256
+ ## NVIDIA Riva: Deployment
257
+
258
+ [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
259
+ Additionally, Riva provides:
260
+
261
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
262
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
263
+ * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
264
+
265
+ Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
266
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
267
+
268
+ ## References
269
+ [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
270
+
271
+ [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
272
+
273
+ [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
274
+
275
+ ## Licence
276
+
277
+ License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.