File size: 1,901 Bytes
46bdd5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-lg-cased-ms-ner-v3-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-lg-cased-ms-ner-v3-test
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1071
- Precision: 0.8912
- Recall: 0.9039
- F1: 0.8975
- Accuracy: 0.9813
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1478 | 1.0 | 3615 | 0.1187 | 0.8247 | 0.8225 | 0.8236 | 0.9687 |
| 0.0909 | 2.0 | 7230 | 0.1025 | 0.8617 | 0.8702 | 0.8659 | 0.9753 |
| 0.0552 | 3.0 | 10845 | 0.1016 | 0.8789 | 0.8886 | 0.8837 | 0.9790 |
| 0.0325 | 4.0 | 14460 | 0.0966 | 0.8958 | 0.8956 | 0.8957 | 0.9815 |
| 0.0185 | 5.0 | 18075 | 0.1071 | 0.8912 | 0.9039 | 0.8975 | 0.9813 |
### Framework versions
- Transformers 4.39.3
- Pytorch 1.12.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|