nxaliao commited on
Commit
6547f82
1 Parent(s): 793bbd8

NER Training complete

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlnet-large-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: xlnet-lg-cased-ms-ner-test
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # xlnet-lg-cased-ms-ner-test
20
+
21
+ This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1308
24
+ - Precision: 0.8828
25
+ - Recall: 0.9077
26
+ - F1: 0.8951
27
+ - Accuracy: 0.9814
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.137 | 1.0 | 3615 | 0.1313 | 0.7971 | 0.7986 | 0.7979 | 0.9663 |
59
+ | 0.0761 | 2.0 | 7230 | 0.0894 | 0.8564 | 0.8773 | 0.8667 | 0.9781 |
60
+ | 0.0459 | 3.0 | 10845 | 0.0946 | 0.8718 | 0.8918 | 0.8817 | 0.9803 |
61
+ | 0.021 | 4.0 | 14460 | 0.1091 | 0.8795 | 0.9017 | 0.8905 | 0.9808 |
62
+ | 0.013 | 5.0 | 18075 | 0.1308 | 0.8828 | 0.9077 | 0.8951 | 0.9814 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.39.3
68
+ - Pytorch 1.12.0
69
+ - Datasets 2.18.0
70
+ - Tokenizers 0.15.2