NER Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlnet-large-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: xlnet-lg-cased-ms-ner-test
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# xlnet-lg-cased-ms-ner-test
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1308
|
24 |
+
- Precision: 0.8828
|
25 |
+
- Recall: 0.9077
|
26 |
+
- F1: 0.8951
|
27 |
+
- Accuracy: 0.9814
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 5
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.137 | 1.0 | 3615 | 0.1313 | 0.7971 | 0.7986 | 0.7979 | 0.9663 |
|
59 |
+
| 0.0761 | 2.0 | 7230 | 0.0894 | 0.8564 | 0.8773 | 0.8667 | 0.9781 |
|
60 |
+
| 0.0459 | 3.0 | 10845 | 0.0946 | 0.8718 | 0.8918 | 0.8817 | 0.9803 |
|
61 |
+
| 0.021 | 4.0 | 14460 | 0.1091 | 0.8795 | 0.9017 | 0.8905 | 0.9808 |
|
62 |
+
| 0.013 | 5.0 | 18075 | 0.1308 | 0.8828 | 0.9077 | 0.8951 | 0.9814 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.39.3
|
68 |
+
- Pytorch 1.12.0
|
69 |
+
- Datasets 2.18.0
|
70 |
+
- Tokenizers 0.15.2
|