--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-tiny-ak results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 66.88305203235794 --- # whisper-tiny-ak This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3054 - Wer: 66.8831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1919 | 13.3333 | 1000 | 0.8641 | 61.9195 | | 0.0111 | 26.6667 | 2000 | 1.1524 | 64.9256 | | 0.0031 | 40.0 | 3000 | 1.2699 | 63.7272 | | 0.0022 | 53.3333 | 4000 | 1.3054 | 66.8831 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1