File size: 8,626 Bytes
a068e05 516f8a5 a068e05 516f8a5 a068e05 8279d4a a068e05 3629d48 a068e05 516f8a5 a068e05 8279d4a 7f965b4 a068e05 516f8a5 a068e05 516f8a5 a068e05 516f8a5 a068e05 516f8a5 a068e05 3128edb 2bb1e73 3128edb 2bb1e73 3128edb 2bb1e73 3128edb a068e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
license: apache-2.0
language:
- en
- it
pipeline_tag: text-generation
---
![image/png](https://huggingface.co/datasets/malteos/images/resolve/main/occiglot.medium.png)
# Occiglot-7B-IT-EN
> A [polyglot](https://en.wikipedia.org/wiki/Multilingualism#In_individuals) language model for the [Occident](https://en.wikipedia.org/wiki/Occident).
>
**Occiglot-7B-IT-EN** is a generative language model with 7B parameters for Italian and English and trained by the [Occiglot Research Collective](https://occiglot.github.io/occiglot/)..
It is based on [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and trained on 113B tokens of additional multilingual and code data with a block size of 8,192 tokens per sample.
Note that the model is a general-purpose base model and was not instruction-fine-tuned nor optimized for chat or other applications. We make an instruction tuned variant available as [occiglot-7b-it-en-instruct](https://huggingface.co/occiglot/occiglot-7b-it-en-instruct)
This is the first release of an ongoing open research project for multilingual language models.
If you want to train a model for your own language or are working on evaluations, please contact us or join our [Discord server](https://discord.gg/wUpvYs4XvM). **We are open for collaborations!**
### Model details
- **Continued-pretraining from:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- **Model type:** Causal decoder-only transformer language model
- **Languages:** English, Italian, and code.
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
- **Compute resources:** [HessianAI's 42](https://hessian.ai/)
- **Contributors:** Manuel Brack, Patrick Schramowski, Pedro Ortiz, Malte Ostendorff, Fabio Barth, Georg Rehm, Kristian Kersting
- **Research labs:** [Occiglot](https://occiglot.github.io/occiglot/) with support from [SAINT](https://www.dfki.de/en/web/research/research-departments/foundations-of-systems-ai) and [SLT](https://www.dfki.de/en/web/research/research-departments/speech-and-language-technology)
- **Contact:** [Discord](https://discord.gg/wUpvYs4XvM)
### How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='occiglot/occiglot-7b-it-en')
>>> set_seed(42)
>>> generator("Salve, sono una modella linguistica,", max_length=40, num_return_sequences=1)
[{'generated_text': 'Salve, sono una modella linguistica che può aiutarvi a tradurre testi tra l'italiano e l'inglese. Se mi inviate un testo in italiano'}]
```
## Dataset
The training data is the respective subset of the data used for [occiglot-7b-eu5](https://huggingface.co/occiglot/occiglot-7b-eu5), i.e. Italian plus English and Code.
The data distribution by language (estimated) is as follows:
- English: ~34%
- Code: ~13%
- Italian: ~52%
The training data was prepared using [lm-datasets](https://github.com/malteos/lm-datasets).
The exact data configuration is [here](https://huggingface.co/occiglot/occiglot-7b-eu5/blob/main/lm-datasets-config.yml).
## Training settings
- Continual pre-training on 128 x A100-80GB on [HessianAI's 42](https://hessian.ai/).
- Framework: [Determined](https://www.determined.ai/)
- Precision: bf16
- Optimizer: AdamW (lr: 0.00001, warmup_steps: 420)
- Global batch size: 512 (with 8192 blocksize) split over 128 GPUs
- Cosine Annealing with Warmup
## Tokenizer
Tokenizer is unchanged from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
## Evaluation
Preliminary evaluation results can be found below.
Please note that the non-English results are based on partially machine-translated datasets and English prompts ([Belebele](https://huggingface.co/datasets/facebook/belebele) and [Okapi framework](https://github.com/nlp-uoregon/Okapi)) and thus should be interpreted with caution, e.g., biased towards English model performance.
Currently, we are working on more suitable benchmarks for Spanish, French, German, and Italian.
<details>
<summary>Evaluation results</summary>
### All 5 Languages
| | avg | arc_challenge | belebele | hellaswag | mmlu | truthfulqa |
|:---------------------------|---------:|----------------:|-----------:|------------:|---------:|-------------:|
| Occiglot-7b-eu5 | 0.516895 | 0.508109 | 0.675556 | 0.718963 | 0.402064 | 0.279782 |
| Occiglot-7b-eu5-instruct | 0.537799 | 0.53632 | 0.691111 | 0.731918 | 0.405198 | 0.32445 |
| Occiglot-7b-it-en | 0.513221 | 0.500564 | 0.694444 | 0.668099 | 0.413528 | 0.289469 |
| Occiglot-7b-it-en-instruct | 0.53721 | 0.523128 | 0.726667 | 0.683414 | 0.414918 | 0.337927 |
| Cerbero-7b | 0.532385 | 0.513714 | 0.743111 | 0.654061 | 0.427566 | 0.323475 |
| Mistral-7b-v0.1 | 0.547111 | 0.528937 | 0.768444 | 0.682516 | 0.448253 | 0.307403 |
| Mistral-7b-instruct-v0.2 | 0.56713 | 0.547228 | 0.741111 | 0.69455 | 0.422501 | 0.430262 |
### English
| | avg | arc_challenge | belebele | hellaswag | mmlu | truthfulqa |
|:---------------------------|---------:|----------------:|-----------:|------------:|---------:|-------------:|
| Occiglot-7b-eu5 | 0.59657 | 0.530717 | 0.726667 | 0.789882 | 0.531904 | 0.403678 |
| Occiglot-7b-eu5-instruct | 0.617905 | 0.558874 | 0.746667 | 0.799841 | 0.535109 | 0.449 |
| Occiglot-7b-it-en | 0.630127 | 0.580205 | 0.774444 | 0.804222 | 0.578977 | 0.412786 |
| Occiglot-7b-it-en-instruct | 0.659383 | 0.609215 | 0.82 | 0.809301 | 0.578835 | 0.479562 |
| Cerbero-7b | 0.66661 | 0.613481 | 0.827778 | 0.810396 | 0.600484 | 0.480911 |
| Mistral-7b-v0.1 | 0.668385 | 0.612628 | 0.844444 | 0.834097 | 0.624555 | 0.426201 |
| Mistral-7b-instruct-v0.2 | 0.713657 | 0.637372 | 0.824444 | 0.846345 | 0.59201 | 0.668116 |
### Italian
| | avg | arc_challenge_it | belebele_it | hellaswag_it | mmlu_it | truthfulqa_it |
|:---------------------------|---------:|-------------------:|--------------:|---------------:|----------:|----------------:|
| Occiglot-7b-eu5 | 0.421382 | 0.501283 | 0.652222 | 0.700533 | 0 | 0.252874 |
| Occiglot-7b-eu5-instruct | 0.437214 | 0.516681 | 0.661111 | 0.71326 | 0 | 0.295019 |
| Occiglot-7b-it-en | 0.432667 | 0.536356 | 0.684444 | 0.694768 | 0 | 0.247765 |
| Occiglot-7b-it-en-instruct | 0.456261 | 0.545766 | 0.717778 | 0.713804 | 0 | 0.303959 |
| Cerbero-7b | 0.434939 | 0.522669 | 0.717778 | 0.631567 | 0 | 0.302682 |
| Mistral-7b-v0.1 | 0.426264 | 0.502139 | 0.734444 | 0.630371 | 0 | 0.264368 |
| Mistral-7b-instruct-v0.2 | 0.442383 | 0.519247 | 0.703333 | 0.6394 | 0 | 0.349936 |
</details>
## Acknowledgements
The model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)).
The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)
through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).
## License
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
## See also
- https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01
|