|
--- |
|
license: apache-2.0 |
|
model-index: |
|
- name: mera-mix-4x7B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 72.95 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 89.17 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 64.44 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 77.17 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 85.64 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 66.11 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# New: mera-mix-4x7B GGUF |
|
This is a repo for GGUF quants of mera-mix-4x7B. Currently it holds the FP16 and Q8_0 items only. |
|
|
|
# Original: Model mera-mix-4x7B |
|
|
|
This is a mixture of experts (MoE) model that is half as large (4 experts instead of 8) as the [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) |
|
while been comparable to it across different benchmarks. You can use it as a drop in replacement for your Mixtral-8x7B and get much faster inference. |
|
|
|
mera-mix-4x7B achieves 76.37 on the openLLM eval v/s 72.7 by Mixtral-8x7B (as shown [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mistralai__Mixtral-8x7B-Instruct-v0.1)). |
|
|
|
You can try the model with the [Mera Mixture Chat](https://huggingface.co/spaces/meraGPT/mera-mixture-chat). |
|
|
|
<!-- |
|
## OpenLLM Eval |
|
|
|
| Model | ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|Average| |
|
|-------------------------------------------------------------|----:|--------:|----:|---------:|---------:|----:|------:| |
|
|[mera-mix-4x7B](https://huggingface.co/meraGPT/mera-mix-4x7B)|72.01| 88.82|63.67| 77.45| 84.61|71.65| 76.37| |
|
|
|
Raw eval results are available at this [gist](https://gist.github.com/codelion/78f88333230801c9bbaa6fc22078d820) |
|
--> |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_meraGPT__mera-mix-4x7B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |75.91| |
|
|AI2 Reasoning Challenge (25-Shot)|72.95| |
|
|HellaSwag (10-Shot) |89.17| |
|
|MMLU (5-Shot) |64.44| |
|
|TruthfulQA (0-shot) |77.17| |
|
|Winogrande (5-shot) |85.64| |
|
|GSM8k (5-shot) |66.11| |
|
|
|
|