--- datasets: - oddadmix/arabic-triplets language: - ar base_model: - Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2 tags: - reranking - arabic-nlp - nlp --- # Arabic Reranker Model This is an Arabic reranker model, fine-tuned from the [Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2](https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2), which itself is based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02). The model is designed to perform reranking tasks by scoring and ordering text options based on their relevance to a given query, specifically optimized for Arabic text. This model was trained on a synthetic dataset of Arabic triplets generated using large language models (LLMs). It was refined using a scoring technique, making it ideal for ranking tasks in Arabic Natural Language Processing (NLP). ## Model Use This model is well-suited for Arabic text reranking tasks, including: - Information retrieval and document ranking - Search engine results reranking - Question-answering tasks requiring ranked answer choices ## Example Usage Below is an example of how to use the model with the `sentence_transformers` library to rerank paragraphs based on relevance to a query. ### Code Example ```python from sentence_transformers import CrossEncoder # Load the model model = CrossEncoder('oddadmix/arabic-reranker', max_length=512) # Define the query and candidate paragraphs Query = 'كيف يمكن استخدام التعلم العميق في معالجة الصور الطبية؟' Paragraph1 = 'التعلم العميق يساعد في تحليل الصور الطبية وتشخيص الأمراض' Paragraph2 = 'الذكاء الاصطناعي يستخدم في تحسين الإنتاجية في الصناعات' # Score the paragraphs based on relevance to the query scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)]) # Output scores print("Score for Paragraph 1:", scores[0]) print("Score for Paragraph 2:", scores[1])